Вопросы по молекулярной физике и термодинамике. Молекулярная физика и термодинамика молекулярная физика и. Насыщенный пар, влажность

ПРЕДИСЛОВИЕ

Молекулярная физика и термодинамика на фундаментальном уровне изучают общее понятие об энергии и ее превращениях, свойства и особенности вещества в различных условиях. Рассмотрение вопросов такого рода закладывает основу для освоения общетехнических и специальных дисциплин. В будущей практической деятельности выпускника вуза эти знания и навыки должны помочь в постановке и решении инженерных задач, а также освоении новых видов техники и оборудования.

В соответствии с этим, в учебном пособии последовательно вводятся основные понятия и величины, характеризующие тепловые явления, а также взаимосвязь между ними. Рассмотрены особенности классической статистики, распределение Максвелла-Больцмана, явления переноса, понятие квантовой электроники и плазмы, фазовых превращений.

На основе первого и второго начал рассмотрены основы термодинамики.

Текст сопровождается примерами решения задач по соответствующим темам.

В приложении приведены физические постоянные, некоторые математические соотношения, а также вопросы и задачи для проведения коллоквиумов или самостоятельной работы студентов.

Отсутствующий здесь материал, связанный с квантовой статистикой и физикой твердого тела имеется в ранее опубликованном нами пособии (3).

В пособии используется стандартная система единиц СИ, хотя в примерах даются нестандартные единицы (кал, атм, мм. рт. ст. и др.).

ВВЕДЕНИЕ

МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

Молекулярная физика - раздел физики, изучающий строение и свойства вещества, исходя из вытекающих из опыта представлений о том, что любое тело состоит из большого числа частиц (атомов или молекул), находящихся в непрерывном хаотическом тепловом движении . В механике движение тела однозначно определяется начальными условиями и силами, действующими на тело. Зная эти величины, можно вычислить положение тела в любой момент времени. Такие явления описываются динамическими закономерностями. В молекулярной физике рассматриваются явления, вызванные действием огромного числа частиц. При движении такого огромного числа частиц, координаты и скорости которых постоянно меняются, рассчитать движение каждого из огромного числа атомов или молекул невозможно даже на компьютере, поэтому в данном случае проявляются вероятностные или статистические закономерности, изучаемые методами статистической физики. Это означает, что законы молекулярной физики нельзя свести к законам механики. В статистической физике рассматривается конкретная молекулярная модель и к ней применяются математические методы статистики и теории вероятностей. Следовательно, для исследования используется статистический метод.


Статистический метод основан на законах теории вероятностей и математической статистики.

Статистическая физика рассматривает равновесное состояние - состояние, при котором макроскопические параметры не меняются со временем.

Методами статистической физики изучается, например, диффузия, теплопроводность, теплоемкость - явления, которые полностью определяются строением вещества. Макроскопические процессы в телах, состоящих из большого числа частиц, изучает так же термодинамика.

Термодинамика - раздел физики, изучающий связь и взаимопревращения различных видов энергии, теплоты и работы.

Термодинамика не рассматривает конкретные молекулярные модели. На основе опытных данных формулируются основные законы или начала термодинамики. Эти законы и следствия из них применяются к конкретным физическим явлениям, связанным с макроскопическими превращениями энергии, т.е. не с процессами, происходящими с отдельными атомами и молекулами, а с телами, состоящими из очень большого числа частиц.

Таким образом, предмет у термодинамики и статистической физики один и тот же, различаются лишь методы, которые взаимно дополняют друг друга.

Термодинамика рассматривает термодинамические системы . Системой называют совокупность физических объектов, заключенных в конечной области пространства. Термодинамической системой называется совокупность макроскопических тел и полей, обменивающихся энергией и веществом друг с другом и с внешней средой. Система может состоять и из одного тела. Признаки, характеризующие систему, например, давление, температура, плотность и ряд других, называются термодинамическими параметрами или параметрами состояния. Обычно подбирается минимальное число параметров, которые полностью описывают состояние системы.

Различают экстенсивные параметры, величины которых, завися от количества вещества и интенсивные параметры, величины которых, не зависят от количества вещества. Примером экстенсивной величины является энергия, интенсивной - плотность, температура. Обычно экстенсивные параметры обозначают прописными буквами, а интенсивные - строчными.

Совокупность всех термодинамических параметров задает термодинамическое состояние системы. Уравнение состояния связывает минимальное число термодинамических параметров, необходимое для описания как самого состояния системы, так и других параметров. Термодинамический метод основан на определении состояния термодинамической системы.

Статистические и термодинамические методы являются эффективными методами исследования любых систем, состоящих из большого числа частиц, а не только молекулярных систем. Это означает, что эти методы являются общефизическими методами исследования, а молекулярная физика выступает лишь в качестве одной из областей их применения.

ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ

Статистический и т/д методы исследования .

Молекулярная физика и термодинамика - разделы физики, в которых изучаются макроскопические процессы в телах, связанные с огромным числом содержащихся в телах атомов и молекул.

Молекулярная физика представляет собой раздел физики, изучающий строение и свойства веществ, исходя из так называемых молекулярно-кинетических представлений. Согласно этим представлениям:

1. Любое тело - твердое, жидкое или газообразное состоит из большого количества весьма малых обособленных частиц-молекул.

2. Молекулы всякого вещества находятся в бесконечном хаотическом движении (например, броуновское движение).

3. Используется идеализированная модель идеального газа, согласно которой:

а). Собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда (разреженность).

б). Между молекулами отсутствуют силы взаимодействия.

в). Столкновение молекул газа между собой и со стенками сосуда абсолютно упругие.

4. Макроскопические свойства тел (давление, температура и др.) описываются с помощью статистических методов, основным понятием которых является статистический ансамбль, т.е. описывается поведения большого числа частиц через введение средних характеристик (средняя скорость, энергия) всего ансамбля, а не отдельной частицы.

Термодинамика в отличие от молекулярно-кинетической теории изучает макроскопические свойства тел, не интересуясь их макроскопической картиной.

Термодинамика - раздел физики, изучающий общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехода между этими состояниями.

В основе термодинамики лежат 3 фундаментальных закона, называемых началами термодинамики, установленных на основании обобщения большой совокупности опытных фактов.

Молекулярно-кинетическая теория и термодинамика взаимно дополняют друг друга, образуя единое целое, но отличаясь различными методами исследования.

Термодинамическая система - совокупность макроскопических тел, которые взаимодействуют и обмениваются энергией как между собой, так и с другими телами. Состояние системы задается термодинамическими параметрами - совокупность физических величин, характеризующих свойства термодинамической системы, обычно в качестве параметров состояния выбирающих температуру, давление и удельный объем.

Температура - физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы.

[ T ] = K - термодинамическая шкала, [ t ] = ° C - международная практическая шкала. Связь термодинамической и м/н практической температуры: Т = t + 273, например, при t = 20 ° C T = 293 K .

Удельный обьем - это обьем единицы массы. Когда тело однородно т. е. ρ = const , то макроскопические свойства однородного тела могут характеризовать обьем тела V .

Молекулярно-кинетическая теория (м. к. т) идеальных газов.

§1 Закон идеальных газов .

В молекулярно - кинетической теории используется идеализированная модель идеального газа.

Идеальным газом называется газ, молекулы которого не взаимодействуют друг с другом на расстоянии и имеют ничтожно малые собственные размеры.

У реальных газов молекулы испытывают действия силы межмолекулярного взаимодействия. Однако H 2, He , O 2, N 2 при н. у. (Т=273К, Р=1,01 ·10 5 Па) можно приблизительно считать идеальным газом.

Процесс, при котором один из параметров (p , V , T , S ) остаются постоянными, называются изопроцессами.

  1. Изотермический процесс Т= const , m = const , описываются законом Бойля-Мариотта :

pV = const

  1. Изобарический процес p = const описывается законом Гей-Люссака

V = V 0 (1+ α t );

V = V 0 α T

Терметический коэффициент обьемного расширения град -1

  1. Изохорический процесс V = const

Описывается законом Шарля

p = p 0 (1+ α t );

p = p 0 α T

Характеризует зависимость объёма от температуры. α равен относительному изменению объёма газа при нагревании его на 1 К. Как показывает опыт, одинаков для всех газов и равен .

4. Моль вещества. Число Авогадро. Закон Авогадро.

Атомной массой () химического элемента называется отношение массы атома этого элемента к 1/12 массы атома изотопа углерода С 12

2.1. Основные понятия молекулярной физики и термодинамики

Молекулярная физика - раздел физики, в котором изучаются физические свойства и строение вещества в различных агрегатных состояниях на основе их микроскопического (молекулярного) строения.

Молекулярно-кинетическая теория строения вещества - раздел молекулярной физики, в котором изучаются свойства тел на основе представлений об их молекулярном строении.

Статистическая физика – раздел молекулярной физики, в котором изучаются свойства и движения не отдельных молекул (частиц), а совокупности частиц, характеризующиеся средними величинами.

Термодинамика – наука, в которой изучаются свойства физических систем вне связи с их микроскопическим строением.

Система – совокупность рассматриваемых тел (в частности: молекул, атомов, частиц).

Параметры состояния системы: p-давление, V- объём, T-температура.

а) Интенсивные параметры - параметры (давление, температура, концентрация и др.), не зависящие от массы системы.

Температура - физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. Свойство температуры - определять направление теплового обмена. Температура в молекулярной физике определяет распределение частиц по уровням энергии и распределение частиц по скоростям.

Термодинамическая температурная шкала - температурная шкала, определяемая температура (абсолютная температура) в которой всегда положительна.

б) Экстенсивные параметры - параметры (объем, внутренняя энергия, энтропия и др.), значения которых пропорциональны массе термодинамической системы или ее объему.

Внутренняя энергия системы - суммарная кинетическая энергия хаотического движения молекул, потенциальная энергия их взаимодействия и внутримолекулярная энергия, т.е. энергия системы без учёта кинетической энергии её в целом (при движении) и потенциальной энергии во внешнем поле.

Изменение внутренней энергии при переходе системы из состояния в состояние равно разности значений внутренней энергии в этих состояниях и не зависит от пути перехода системы из одного состояния в другое.

Уравнение состояния системы:

F(p,V,T) = 0. (2.1)

Неравновесное состояние системы – такое, при котором какой-либо из ее параметров состояния системы изменяется.

Равновесное состояние системы - такое, при котором все параметры состояния системы имеют определённые значения, постоянные при неизменных внешних условиях.

Время релаксации - время, в течение которого система приходит в равновесное состояние.

Процесс – переход системы из одного состояния в другое состояние, связанный с изменением хотя бы одного из ее параметров состояния:

а) обратимый процесс - процесс, при котором возможно осуществить обратный переход системы из конечного в начальное состояние через те же промежуточные состояния так, чтобы не осталось никаких изменений в окружающей систему среде;

б) необратимый процесс - процесс, при котором невозможно осуществить обратный переход системы в первоначальное состояние, или если по окончании процесса в окружающей среде или в самой системе произошли какие-либо изменения;

в) круговой процесс (цикл) - такая последовательность превращений, в результате которой система, выйдя из какого-либо исходного состояния, возвращается в него вновь. Любой круговой процесс состоит из процессов расширения и сжатия. Процесс расширения сопровождается работой, совершаемой системой, а процесс сжатия - работой, совершаемой над системой внешними силами. Разность этих работ равна работе данного цикла.

Динамические закономерности - закономерности, подчиняющиеся системам уравнений (в том числе дифференциальных, интегральных и др.), допускающих существование единственного решения для каждого начального условия.

Статистические закономерности - количественные закономерности, устанавливаемые статистическим методом, в котором рассматриваются лишь средние значения величин, характеризующих данную совокупность молекул (рассматривается конкретная молекулярная модель, и к ней применяются математические методы статистики, основанные на теории вероятностей).

Вероятность термодинамическая - число способов, которыми может быть реализовано данное состояние макроскопической физической системы (предел, к которому стремится относительная частота появления некоторого события при достаточно большом, стремящемся к бесконечности числе повторений опыта при неизменных внешних условиях):

w = n/N, (2.2)

где N - число опытов;

n - число раз получено определенное событие.

Флуктуации - случайные отклонения физических величин от их среднего значения.

Молекула - наименьшая часть вещества, обладающая его основными химическими свойствами и состоящая из атомов, соединенных между собой химическими связями.

Атом - часть вещества микроскопических размеров (микрочастица), наименьшая частица химического элемента, обладающая его свойствами. Атомы в разных сочетаниях входят в состав молекул разных веществ.

Относительная атомная масса - отношение массы данного атома к 1/12 массы изотопа углерода с массовым числом 12 (12 С).

Относительная молекулярная масса - отношение массы данной молекулы к 1/12 массы атома 12 С.

Моль - количество вещества, в котором содержится число частиц (атомов, молекул и других частиц), равное числу атомов в 0,012 кг изотопа углерода С 12 .

Число Авогадро - число атомов или молекул в моле любого вещества: N А = 6,0210 23 моль -1 .

Молярная масса - масса вещества, взятого в количестве одного моля:

 = m 0 N А. (2.3)

2.2. Основные представления и законы молекулярно-кинетической теории

Идеальный газ - теоретическая модель газа, в которой не учитывается взаимодействие его частиц (средняя кинетическая энергия частиц много больше энергии их взаимодействия). Размеры молекул идеального газа малы по сравнению с расстояниями между ними. Суммарный собственный объем молекул такого газа мал по сравнению с объемом сосуда. Силы взаимодействия между молекулами настолько малы, что движение молекул от столкновения до столкновения происходит по прямолинейным отрезкам. Число ежесекундных столкновений молекул велико.

Основные положения молекулярно-кинетической теории идеального газа :

1) газ состоит из мельчайших частиц - атомов или молекул, находящихся в непрерывном движении;

2) в любом, даже очень малом объёме, к которому применимы выводы молекулярно-кинетической теории, число молекул очень велико;

3) размеры молекул малы по сравнению с расстояниями между ними;

4) молекулы газа свободно движутся между двумя последовательными взаимодействиями друг с другом или со стенками сосуда, в котором он находится. Силы взаимодействия между молекулами, кроме моментов соударения, пренебрежимо малы. Соударения молекул происходят без потерь механической энергии, т.е. по закону абсолютно упругого взаимодействия;

5) при отсутствии внешних сил молекулы газа распределяются равномерно по всему объёму;

Основное уравнение молекулярно-кинетической теории газов:

где
- средняя квадратичная скорость.

Основное уравнение молекулярно-кинетической теории газов для давления:

,
, (2.5)

где n 0 = N " /V - число молекул в единице объема;

- средняя кинетическая энергия поступательного движения молекул газа;

k - постоянная Больцмана.

Закон Авогадро : в одинаковых объемах при одинаковых температурах и давлениях содержатся одинаковые количества молекул.

Закон Дальтона: давление смеси газов равно сумме парциальных давлений, т.е. тех давлений, которые имел бы каждый из входящих в смесь газов, если бы в объеме, занятом смесью, находился он один:

Уравнение состояния идеальных газов для произвольной массы m (уравнение Менделева-Клапейрона) :

, (2.7)

где R - газовая постоянная, которая численно равна работе расширения одного моля газа при его нагревании на один градус в условиях постоянного давления;

T - абсолютная температура.

Степени свободы i - число независимых координат, необходимых для полного описания положения системы в пространстве. Все степени свободы равноправны.

Общее число степеней свободы

(2.8)

где - число степеней свободы поступательного движения;

- число степеней свободы вращательного движения;

- число степеней свободы колебательного движения;

i кп - число степеней свободы колебаний точки при поступательном движении;

i квр - число степеней свободы колебаний точки при вращательном движении.

Молекулы газа имеют число степеней свободы:

а) одноатомная - i = 3 (три степени свободы поступательного движения);

б) двухатомная при упругой связи между атомами - i = 6;

в) двухатомная при жёсткой связи между атомами - i = 5;

г) трёхатомная молекула при жёсткой связи между атомами - i = 6.

Теорема о равномерном распределении энергии по степеням свободы: на любую степень свободы приходится в среднем одинаковая энергия, равная
, а молекула, обладающаяi степенями свободы, обладает энергией

(2.9)

где i = i п + i вр + i к.

Внутренняя энергия произвольной массы газа m складывается из энергии отдельных молекул:

, (2.10)

где  - молярная масса газа.

Теплоемкость - физическая величина, численно равная количеству теплоты, которое необходимо сообщить веществу для нагревания его на один градус.

Удельная теплоёмкость " c " - физическая величина, численно равная количеству теплоты, которое необходимо сообщить единице массы вещества для нагревания её на один градус.

Молярная теплоёмкость " C " - физическая величина, численно равная количеству теплоты, которое необходимо сообщить одному молю вещества, чтобы увеличить его температуру на один градус:

. (2.11)

Удельная теплоёмкость при постоянном объеме" c v " - физическая величина, численно равная количеству теплоты, которое необходимо сообщить единице массы вещества для нагревания её на один градус в условиях постоянного объема:

(2.12)

Удельная теплоёмкость при постоянном давлении " c p " - физическая величина, численно равная количеству теплоты, которое необходимо сообщить единице массы вещества для нагревания её на один градус в условиях постоянного давления:

. (2.13)

Молярная теплоёмкость при постоянном объеме " C v " - физическая величина, численно равная количеству теплоты, которое необходимо сообщить одному молю вещества, чтобы увеличить его температуру на один градус в условиях постоянного объема:

.
. (2.14)

Молярная теплоёмкость при постоянном давлении " C p " - физическая величина, численно равная количеству теплоты, которое необходимо сообщить одному молю вещества, чтобы увеличить его температуру на один градус в условиях постоянного давления:

,
. (2.15)

Отношение молярных и удельных теплоемкостей :

Средняя квадратичная скорость молекул (для газа массой "m", находящегося в состоянии равновесия, при T = const) остаётся постоянной:

или
, (2.17)

где N i - число молекул, обладающих скоростью v i ;

N - число всех молекул.

Наиболее вероятная скорость - скорость движения молекул, которая характеризует положение максимума функции распределения Максвелла:

(2.18)

Средняя арифметическая скорость

(2.19)

Относительная скорость применяется для расчета числа молекул, движущихся со скоростями в интервале от v до v + dv:

u = v/v в. (2.20)

Закон распределения молекул идеального газа по скоростям в стационарном состоянии (распределение Максвелла):

(2.21)

где dn v - среднее число молекул в единице объема со скоростями в интервале от v до v + dv;

n - число молекул в единице объема.

Функция распределения (доля молекул от их общего числа отнесена к некоторому интервалу скоростей):

или
, (2.22)

где dn v /ndv - функция распределения.

Свободные пробеги молекул - прямолинейные участки траектории, проходимые молекулой между двумя последовательными соударениями.

Средняя длина свободного пробега молекулы – среднее расстояние, проходимое молекулой между двумя соударениями:

(2.23)

где Z - число соударений;

v - средняя скорость молекулы;

k - постоянная Больцмана;

d - диаметр молекулы;

p - давление;

T - абсолютная температура.

Среднее число соударений - число соударений молекул , численно равное отношению средней скорости движения молекул к средней длине свободного пробега:

, (2.24)

Эффективный диаметр молекулы d - минимальное расстояние, на которое сближаются при столкновении центры 2-х молекул.

Эффективное сечение - величина равная

 = d 2 . (2.25)

Барометрическая формула показывает, что давление убывает с высотой тем быстрее, чем тяжелее газ и чем ниже его температура:

(2.26)

Закон распределения молекул газа по высоте в поле сил тяготения (распределение Больцмана):

где n o - число молекул в единице объема в том месте, где потенциальная энергия молекул равна нулю;

n - число молекул в единице объема в тех точках пространства, где потенциальная энергия молекул равна W p .

Распределение Максвелла-Больцмана - благодаря этому распределению можно определить долю молекул идеального газа, имеющих скорости в интервале от v до v + dv и обладающих потенциалом  = gh во внешнем силовом поле:

, (2.28)

где v в - наиболее вероятная скорость, значению которой соответствует максимум кривой Максвелла.

Зависимость плотности газа от высоты:

где m o - масса одной молекулы.

2.3. Основные положения и законы термодинамики

Первое начало термодинамики - закон сохранения и превращения энергии, которым сопровождаются термодинамические процессы – количество тепла, подводимого к системе, идет на изменение ее внутренней энергии и работу, производимую системой против внешних сил:

, (2.30)

где dU - изменение внутренней энергии системы;

Q - элементарное количество тепла, подводимого к системе;

A - элементарная работа, совершаемая системой.

Изотермический процесс - процесс, протекающий при постоянной температуре (T = const). При изотермическом процессе все подводимое к системе тепло идет на совершение этой системой работы
, при этом dU = C v dT = 0,

а U = = const.

m идеального газа при изотермическом процессе:

. (2.31)

Изобарический процесс – процесс, протекающий при постоянном давлении (p = const). При этом подводимое к системе тепло идет как на изменение ее внутренней энергии, так и на совершение этой системой работы:

Работа, совершаемая произвольной массой m

. (2.33)

Изменение внутренней энергии произвольной массы m идеального газа при изобарическом процессе:

. (2.34)

Изохорический процесс – процесс, протекающий при постоянном объеме (V = const). При этом все подводимое к системе тепло идет на изменение ее внутренней энергии:

,
(2.35)

Адиабатический процесс - процесс, протекающий без теплообмена или почти без теплообмена с окружающей средой. При этом работа может совершаться системой только за счет убыли ее внутренней энергии:

,
. (2.36)

Уравнения адиабатического процесса (уравнения Пуассона):


;
. (2.37)

Работа, совершаемая произвольной массой m идеального газа при адиабатическом расширении:

. (2.38)

Политропический процесс - такой процесс, при котором p и V связаны соотношением:

, (2.39)

где n - показатель политропы, принимающий любые значения от -  до + . В частности для изобарического процесса n = 0, изотермического - n = 1, адиабатического - n = , изохорического - n = .

Работа, совершаемая произвольной массой m идеального газа при политропическом процессе:

(2.40)

Работа, совершаемая идеальным газом при круговом процессе, равна разности работ при расширении А 1 и при сжатии А 2 газа и эквивалентна разности количеств тепла, подводимого к системе при расширении Q 1 и отводимого от нее при сжатии Q 2 :

Коэффициент полезного действия кругового процесса (цикла) - физическая величина, равная отношению работы цикла к работе, которую можно было бы совершить при превращении в нее всего количества тепла, подведенного к системе:

(2.42)

Цикл Карно - цикл, состоящий из двух изотермических и двух адиабатических процессов.

Работа, совершаемая произвольной массой m идеального газа в цикле Карно, - разность между работой, совершенной системой при расширении, и работой, совершенной над системой при ее сжатии:

. (2.43)

Коэффициент полезного действия цикла Карно не зависит от природы вещества, а зависит лишь от температур, при которых теплота сообщается системе и отбирается от нее:

. (2.44)

Коэффициент полезного действия холодильной машины (холодильника):

(2.45)

Цикл Отто состоит из двух адиабат и двух изохор.

Цикл Дизеля состоит из двух адиабат, изохоры и изобары.

Энтропия - физическая величина, элементарное изменение которой при переходе системы из одного состояния в другое равно полученному или отданному количеству теплоты, деленному на температуру, при которой произошел этот процесс:

. (2.46)

Связь энтропии системы с термодинамической вероятностью (соотношение Больцмана):

S = kln w, (2.47)

где k - постоянная Больцмана.

переходе из одного состояния в другое

. (2.48)

Изменение энтропии системы при переходе из одного состояния в другое:

Изменение энтропии системы при изотермическом процессе:

. (2.50)

Изменение энтропии системы при изобарическом процессе:

Изменение энтропии системы при изохорическом процессе:

. (2.52)

Изменение энтропии системы при адиабатическом процессе:

S = 0,
. (2.53)

Изменение энтропии системы, совершающей цикл Карно:

, (2.54)

где S р - изменение энтропии рабочего тела;

S н, S х - изменение энтропии нагревателя и холодильника;

S пр - изменение энтропии "потребителя работы".

В случае совершения системой обратимого цикла Карно энтропия замкнутой системы не изменяется:

S обр = 0 или S обр =const. (2.55)

В случае совершения системой необратимого цикла Карно энтропия замкнутой системы возрастает:

S  0;
;
. (2.56)

Для произвольных процессов, происходящих в замкнутой системе, энтропия системы для любых происходящих в ней процессов не может убывать:

S  0 или
, (2.57)

где знак равенства справедлив для обратимых процессов, а знак неравенства - для необратимых.

Второе начало термодинамики: в изолированной системе возможны только такие процессы, при которых энтропия системы возрастает или невозможен процесс, единственным результатом которого является превращение в работу теплоты, полученной от нагревателя:

Термодинамические потенциалы - определенные функции объема V, давления p, температуры T, энтропии S, числа частиц системы N и других макроскопических параметров x, характеризующих состояние термодинамической системы:

а) внутренняя энергия - энергия системы, зависящая от ее внутреннего состояния. Она является однозначной функцией независимых переменных, определяющих это состояние, например температуры T и объема V (или давления p):

U = U(S,V,N,x). (2.59)

Изменение внутренней энергии системы U определяется лишь ее значениями в начальном и конечном состояниях:

. (2.60)

б) энтальпия (теплосодержание) характеризует состояние макроскопической системы в термодинамическом равновесии при выборе в качестве основных независимых переменных энтропии S и давления p:

H = H(S,p,N,x). (2.61)

Энтальпия системы равна сумме энтальпий составляющих ее частей.

Связь энтальпии с внутренней энергией U системы:

, (2.62)

где V - объем системы.

Полный дифференциал энтальпии (при неизменных N и x ) имеет вид

. (2.63)

Связь энтальпии с температурой, объемом и теплоемкостью (при постоянном давлении) системы:

;
; C p =(dH/dt). (2.64)

Изменение энтальпии (H ) равно количеству теплоты, которое сообщают системе или отводят от нее при постоянном давлении, поэтому значения H характеризуют тепловые эффекты фазовых переходов (плавления, кипения и т. д.), химических реакций и других процессов, протекающих при постоянном давлении.

в) свободная энергия - одно из названий изохорно-изотермического термодинамического потенциала или Гельмгольца энергии. Представляет собой ту часть внутренней энергии системы, которая превращается во внешнюю работу при обратимых изотермических процессах F = F(V,T,N,x):

где TS - связанная энергия.

Связанная энергия представляет собой ту часть внутренней энергии, которая не может быть передана в виде работы при изотермическом процессе:

TS = U - F. (2.66)

Изменение (уменьшение) свободной энергии при необратимых изотермических процессах определяет наибольшую величину работы, которую может совершить система:

;
. (2.67)

г) энергия Гиббса - изобарно-изотермический потенциал, свободная энтальпия, характеристическая функция термодинамической системы при независимых параметрах p, T и N - G. В изотермически равновесном процессе, при постоянном давлении, убыль энергии Гиббса системы равна полной работе системы за вычетом работы против внешнего давления (т.е. равна максимальному значению "полезной" работы):

G = G(p,T,N,x);
. (2.68)

Связь энергии Гиббса со свободной энергией:

. (2.69)

д) химический потенциал - физическая величина, равная энергии Гиббса отдельно взятой частицы.

Третье начало термодинамики (теорема Нернста): изменение энтропии системы (S) при любых обратимых изотермических процессах, совершаемых между двумя равновесными состояниями при температурах, приближающихся к абсолютному нулю, стремится к нулю. При помощи последовательности термодинамических процессов нельзя достичь температуры, равной абсолютному нулю:

. (2.70)

Термодинамика неравновесных процессов - общая теория макроскопического описания неравновесных процессов. Основная задача термодинамики неравновесных процессов - количественное изучение этих процессов для состояний, не сильно отличающихся от равновесного состояния.

Закон сохранения массы:

, (2.71)

где  - плотность многокомпонентной системы;

v - гидродинамическая скорость среды (средняя скорость переноса массы), зависящая от координат и времени;

∙v - поток массы.

Закон сохранения массы для концентрации какого-либо компонента
:

, (2.72)

где c k - концентрация компонента;

 k - плотность компонента;

 - плотность среды;

J k =  k (v k - v) - диффузионный поток;

v k - гидродинамическая скорость (средняя скорость переноса массы) компонента.

Закон сохранения импульса: изменение импульса элементарного объема может происходить за счет сил, вызванных градиентом внутренних напряжений в среде P  ,  , и внешних сил F k .

Закон сохранения энергии представляет собой первое начало термодинамики в термодинамике неравновесных процессов.

Уравнение баланса энтропии: в термодинамике неравновесных процессов принимается, что энтропия элементарного объема является такой же функцией от внутренней энергии, удельного объема и концентрации, как и в состоянии полного равновесия:

, (2.73)

где  - скорость возрастания энтропии;

 - плотность вещества;

s – энтропия элементарного объема (локальная энтропия);

J s – плотность потока энтропии.

2.4. Реальные газы. Фазовые равновесия и превращения

Реальный газ – газ, свойства которого зависят от взаимодействия частиц и их собственного объема, что особенно проявляется при высоких давлениях и низких температурах.

Уравнение состояния реальных газов (уравнение Ван дер Ваальса) для произвольной массы газа :

, (2.74)

где "а" - поправка Ван дер Ваальса на влияние сил межмолекулярного взаимодействия (на внутреннее давление);

"в" - поправка Ван дер Ваальса на собственный объем молекул;

μ - молекулярная масса газа;

m - масса газа.

Внутренняя энергия реального газа состоит из кинетической энергии поступательного и вращательного движения молекул Е k и потенциальной энергии их взаимодействия Е p .

Потенциальная энергия взаимодействия одного моля молекул реального газа имеет отрицательный знак, т.к. молекулярные силы, создающие внутреннее давление p " , являются силами притяжения:

. (2.75)

Изменение потенциальной энергии реального газа (для моля) равно работе, которую совершает внутреннее давление p при расширении газа от объёма V 1 до V 2:

. (2.76)

Кинетическая энергия молекул реального газа (для моля) согласно теореме о равном распределении энергии по степеням свободы (в некотором приближении):

. (2.77)

Внутренняя энергия одного моля реального газа:

. (2.78)

Изменение температуры реального газа при адиабатическом расширении (при этом газ охлаждается) или сжатии (при этом газ нагревается) :

. (2.79)

Эффект Джоуля - Томсона - изменение температуры реального газа при расширении через пористую перегородку. Если газ при расширении охлаждается, то эффект Джоуля-Томсона называется положительным, если нагревается - отрицательным.

Фаза - равновесное (в термодинамике) состояние вещества, отличающееся по физическим свойствам от других возможных равновесных состояний того же вещества.

Фазовые превращения - переход вещества из одной фазы в другую, связанный с качественными изменениями свойств вещества при изменении внешних условий.

Фазовое равновесие - одновременное существование термодинамически равновесных фаз в многофазной системе.

Правило фаз Гиббса: в веществе, состоящем из n компонентов, одновременно может существовать не более чем (n + 2) равновесных фаз.

Число физических параметров системы, которые можно изменять, не нарушая фазовое равновесие:

L = n + 2 - , (2.80)

где  - число фаз, находящихся в равновесии.

Уравнение Клапейрона-Клаузиуса определяет изменение температуры фазового перехода при бесконечно малом изменении давления:

;
;
, (2.81)

где Q - теплота фазового перехода;

T - температура перехода;

dp/dT - производная от давления по температуре;

dT/dp - производная от температуре по давлению;

(V 2 - V 1) - изменение объема вещества при переходе его из первой фазы во вторую.

Метастабильное состояние - состояние неустойчивого равновесия физической макроскопической системы (фазы). В таком состоянии система может находиться длительное время, не переходя в более устойчивое (при данных условиях) состояние (фазу).

Линии (поверхности) равновесия фаз - графики, изображающие зависимость одних термодинамических переменных от других в условиях фазового равновесия.

Диаграммы состояния - совокупность линий (поверхностей) равновесия фаз.

Тройная точка - точка пересечения одной линии (поверхности) равновесия фаз с другой.

Критическая точка - точка на диаграмме состояния, соответствующая критическому состоянию вещества. Состояние вещества в критической точке характеризуется критическими значениями температуры T k , давления p k и объема V k .

Критическая точка в случае двухфазного равновесия - точка окончания линии (поверхности) равновесия фаз.

Точка перехода - значение температуры, давления или какой-либо другой величины, при которой происходит фазовый переход.

Фазовый переход первого рода характеризуется тем, что при его осуществлении поглощается или выделяется определенное количество теплоты, которое называют теплотой фазового перехода. Значение таких термодинамических величин вещества, как плотность, концентрация компонентов, изменяется скачком.

Фазовый переход второго рода - такой переход, при котором некоторая физическая величина, равная нулю с одной стороны от точки перехода, постепенно растет при удалении от точки перехода в другую сторону, при этом плотность вещества изменяется непрерывно и не происходит поглощения или выделения тепла.

2.5. Кинетические явления (явления переноса)

Кинетические явления (явления переноса) - необратимые процессы, сопровождающиеся переносом какой-либо физической величины, в результате перехода любой системы из неравновесного состояния в равновесное состояние.

Кинетические явления в молекулярной физике - вязкость, теплопроводность, диффузия.

Вязкость (внутреннее трение) - явление переноса, в результате которого происходит перенос количества движения (импульса) молекул из одного слоя газа или жидкости в другой.

Сила внутреннего трения в жидкости или газе определяется по формуле Ньютона:

, (2.82)

где  - коэффициент вязкости;

S - площадь соприкасающихся слоев жидкости или газа;

dv/dz - градиент скорости течения жидкости или газа в направлении, перпендикулярном направлению течения;

Коэффициент динамической вязкости - физическая величина, численно равная силе внутреннего трения между двумя слоями жидкости или газа единичной площади при градиенте скорости, равном единице:

или
, (2.83)

где n 0 - число молекул в единице объема;

u - средняя скорость теплового движения молекул;

m - масса молекулы;

 - средняя длина свободного пробега молекул;

 = n 0 ∙m - плотность жидкости или газа.

Коэффициент кинематической вязкости - отношение динамической вязкости к плотности вещества:

ν = η/ρ. (2.84)

Диффузия - процесс взаимного проникновения молекул (атомов) постороннего вещества, обусловленный их тепловым движением. Диффузия всегда сопровождается переносом массы вещества. Она характерна для газов, жидкостей и твердых тел.

Самодиффузия - процесс взаимного проникновения собственных молекул (атомов), обусловленный их тепловым движением.

Закон диффузии (первый закон Фика) :

, (2.85)

где D - коэффициент диффузии;

dс/dz - скорость изменения (градиент) концентрации в направлении z;

"минус" - показывает, что масса переносится в направлении убывания концентрации данной компоненты.

Коэффициент диффузии - физическая величина, числено равная массе переносимого вещества через единичную площадку в единицу времени при градиенте концентрации, равном единице:

, (2.86)

где - средняя арифметическая скорость молекул;

<> - средняя длина свободного пробега молекул.

Теплопроводность - процесс переноса энергии между контактирующими телами или двумя поверхностями одного и того же тела, возникающий из-за разности температур.

Закон теплопроводности (закон Фурье) - количество тепла dQ, перенесенное через площадку dS за время dt:

, (2.87)

где æ - коэффициент теплопроводности;

dT/dz - скорость изменения (градиент) температуры в направлении z.

Коэффициент теплопроводности - физическая величина, которая показывает, какое количество тепла переносится через единичную площадку в единицу времени при градиенте температур, равном единице:

, (2.88)

где c v – удельная теплоемкость при постоянном объеме.

Тепловой поток - физическая величина, которая показывает, какое количество тепла, переносится в единицу времени через площадь dS при градиенте температуры dT/dz:


. (2.89)

Связь между коэффициентами теплопроводности, диффузии и вязкости:

;  = D;
. (2.90)

Молекулярная физика. Термодинамика.

1.Статистический и термодинамический методы

2.Молекулярно-кинетическая теория идеальных газов

2.1.Основные определения

2.2.Опытные законы идеального газа

2.3.Уравнение состояния идеального газа (уравнение Клапейрона-Менделеева

2.4.Основное уравнение молекулярно-кинетической теории идеального газа

2.5.Распределение Максвелла

2.6.Распределение Больцмана

3.Термодинамика

3.1.Внутренняя энергия. Закон равномерного распределения энергии по степеням свободы

3.2.Первое начало термодинамики

3.3.Работа газа при изменении его объема

3.4.Теплоемкость

3.5.Первое начало термодинамики и изопроцессы

3.5.1.Изохорный процесс (V = const)

3.5.2.Изобарный процесс (p = const)

3.5.3.Изотермический процесс (T = const)

3.5.4. Адиабатический процесс (dQ = 0)

3.5.5. Политропные процессы

3.6.Круговой процесс (цикл). Обратимые и необратимые процессы. Цикл Карно.

3.7.Второе начало термодинамики

3.8.Реальные газы

3.8.1.Силы межмолекулярного взаимодействия

3.8.2.Уравнение Ван-дер-Ваальса

3.8.3.Внутренняя энергия реального газа

3.8.4.Эффект Джоуля-Томсона. Сжижение газов.

1.Статистический и термодинамический методы

Молекулярная физика и термодинамика - разделы физики, в которых изучаются макроскопические процессы , связанные с огромным числом содержащихся в телах атомов и молекул. Для изучения этих процессов применяют два принципиально различающихся (но взаимно дополняющих друг друга) метода: статистический (молекулярно-кинетический) и термодинамический.

Молекулярная физика - раздел физики, изучающий строение и свойства вещества исходя из молекулярно-кинетических представлений, основывающихся на том, что все тела состоят из молекул, находящихся в непрерывном хаотическом движении. Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул . Законы поведения огромного числа молекул изучаются с помощью статистического метода , который основан на том, что свойства макроскопической системы определяются свойствами частиц системы, особенностями их движения и усредненными значениями динамических характеристик этих частиц (скорости, энергии и т.д.). Например, температура тела определяется средней скоростью хаотического движения его молекул и нельзя говорить о температуре одной молекулы.

Термодинамика - раздел физики, изучающий общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия , и процессы перехода между этими состояниями. Термодинамика не рассматривает микропроцессы , которые лежат в основе этих превращений, а основывается на двух началах термодинамики - фундаментальных законах, установленных экспериментальным путем.

Статистические методы физики не могут быть использованы во многих разделах физики и химии, тогда как термодинамические методы универсальны. Однако статистические методы позволяют устанавливать микроскопическое строение вещества, тогда как термодинамические методы лишь устанавливают связи между макроскопическими свойствами. Молекулярно-кинетическая теория и термодинамика взаимно дополняют друг друга, образуя единое целое, но отличаясь методами исследования.

2.Молекулярно-кинетическая теория идеальных газов

2.1.Основные определения

Объектом исследования в молекулярно-кинетической теории является газ. Считается, что молекулы газа, совершая беспорядоченые движения, не связаны силами взаимодействия и поэтому они движутся свободно, стремясь, в результате соударений, разлететься во все стороны, заполняя весь предоставленный им объем. Таким образом, газ принимает объем того сосуда, который газ занимает.

Идеальный газ - это газ, для которого: собственный объем его молекул пренебрежимо мал по сравнению с объемом сосуда; между молекулами газа отсутствуют силы взаимодействия; столкновения молекул газа между собой и со стенками сосуда абсолютно упругие. Для многих реальных газов модель идеального газа хорошо описывает их макро свойства.

Термодинамическая система - совокупность макроскопических тел, которые взаимодействуют и обмениваются энергией как между собой, так и с другими телами (внешней средой).

Состояние системы - совокупность физических величин (термодинамических параметров, параметров состояния) , которые характеризуют свойства термодинамической системы: температура, давление, удельный объем.

Температура - физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. В системе СИ разрешено использование термодинамической и практической шкалы температур . В термодинамической шкале тройная точка воды (температура, при которой лед, вода и пар при давлении 609 Па находятся в термодинамическом равновесии) считается равной Т = 273.16 градуса Кельвина [K]. В практической шкале температуры замерзания и кипения воды при давлении 101300 Па считаются равными, соответственно, t = 0 и t =100 градусов Цельсия [C ]. Эти температуры связаны между собой соотношением

Температура Т = 0 К называется нулем Кельвин, согласно современным представлениям эта температура недостижима, хотя приближение к ней сколь угодно близко возможно.

Давление - физическая величина, определяемая нормальной силой F, действующей со стороны газа (жидкости) на единичную площадку, помещенную внутрь газа (жидкости) p = F/S, где S - размер площадки. Единица давления - паскаль [Па]: 1 Па равен давлению, создаваемому силой 1 Н, равномерно распределенной по нормальной к ней поверхности площадью 1 м 2 (1 Па = 1 Н/м 2).

Удельный объем - это объем единицы массы v = V/m = 1/r, где V - объем массы m, r - плотность однородного тела. Поскольку для однородного тела v ~ V, то макроскопические свойства однородного тела можно характеризовать как v, так и V.

Термодинамический процесс - любое изменение в термодинамической системе, приводящее к изменению хотя бы одного из ее термодинамических параметров. Термодинамическое равновесие - такое состояние макроскопической системы, когда ее термодинамические параметры не изменяются с течением времени. Равновесные процессы - процессы, которые протекают так, что изменение термодинамических параметров за конечный промежуток времени бесконечно мало.

Изопроцессы - это равновесные процессы, при которых один из основных параметров состояния сохраняется постоянным. Изобарный процесс - процесс, протекающий при постоянном давлении (в координатах V,t он изображается изобарой ). Изохорный процесс - процесс, протекающий при постоянном объеме (в координатах p,t он изображается изохорой ). Изотермический процесс - процесс, протекающий при постоянной температуре (в координатах p,V он изображается изотермой ). Адиабатический процесс - это процесс, при котором отсутствует теплообмен между системой и окружающей средой (в координатах p,V он изображается адиабатой ).

Постоянная (число) Авогадро - число молекул в одном моле N A =6.022 . 10 23 .

Нормальные условия : p = 101300 Па, Т = 273.16 К.