Уравнение плоскости, виды уравнения плоскости. Глава II. Аналитическая геометрия в пространстве Y x в пространстве

ЛЕКЦИЯ 6-7. Элементы аналитической геометрии.

Поверхности и их уравнения.

Пример 1.

Сфера .

Пример 2.

F(x,y,z)=0 (*),

Это - уравнение поверхности

Примеры :

x 2 + y 2 – z 2 = 0 (конус)

Плоскость.

Уравнение плоскости, проходящей через заданную точку перпендикулярно заданному вектору.

Рассмотрим плоскость в пространстве. Пусть М 0 (x 0 , y 0 , z 0) – данная точка плоскости Р, а - вектор, перпендикулярный плоскости (нормальный вектор плоскости).

(1) – векторное уравнение плоскости.

В координатной форме:

A(x - x 0) + B(y - y 0) + C(z - z 0) = 0 (2)

Получили уравнение плоскости, проходящей через заданную точку .

Общее уравнение плоскости.

Раскроем скобки в (2): Ax + By + Cz + (-Ax 0 – By 0 – Cz 0) = 0 или

Ax + By + Cz + D = 0 (3)

Полученное уравнение плоскости линейно , т.е. уравнение 1 степени относительно координат x, y, z. Поэтому плоскость – поверхность первого порядка .

Утверждение : Всякое уравнение, линейное относительно x, y, z задает плоскость.

Любая плоскость м.б. задана уравнением (3), которое называется общим уравнением плоскости.

Частные случаи общего уравнения.

а) D=0: Ax + By + Cz = 0. Т.к. координаты точки О(0, 0, 0) удовлетворяют этому уравнению, то заданная им плоскость проходит через начало координат.

б) С=0: Ax + By + D = 0. В этом случае нормальный вектор плоскости , поэтому плоскость, заданная уравнением параллельна оси OZ.

в) С=D=0: Ax + By = 0. Плоскость параллельна оси OZ (т.к. С=0) и проходит через начало координат (т.к. D=0). Значит, она проходит через ось OZ.

г) В=С=0: Ax + D = 0 или . Вектор , т.е. и . Следовательно, плоскость параллельна осям OY и OZ, т.е. параллельна плоскости YOZ и проходит через точку .

Самостоятельно рассмотреть случаи: B=0, B=D=0, A=0, A=D=0, A=C=0, A=B=0/

Уравнение плоскости, проходящей через три заданные точки.

Т.к. все четыре точки принадлежат плоскости, то данные векторы компланарны, т.е. их смешанное произведение равно нулю:

Получили уравнение плоскости, проходящей через три точки в векторной форме.

В координатной форме:

(7)

Если раскрыть определитель, то получим уравнение плоскости в виде:

Ax + By + Cz + D = 0.

Пример . Написать уравнение плоскости, проходящей через точки М 1 (1,-1,0);

М 2 (-2,3,1) и М 3 (0,0,1).

, (x - 1)·3 - (y + 1)(-2) + z·1 = 0;

3x + 2y + z – 1 = 0.

Уравнение плоскости в отрезках

Пусть дано общее уравнение плоскости Ax + By + Cz + D = 0 и D ≠ 0, т.е. плоскость не проходит через начало координат. Разделим обе части на –D: и обозначим: ; ; . Тогда

получили уравнение плоскости в отрезках .

где a, b, c – величины отрезков, отсекаемых плоскостью на осях координат.

Пример 1. Написать уравнение плоскости, проходящей через точки А(3, 0, 0);

B(0, 2, 0) и С(0, 0, -3).

a=3; b=2; c=-3 , или 2x + 3y - 2z – 6 = 0.

Пример 2. Найти величины отрезков, которые отсекает плоскость

4x – y – 3z – 12 = 0 на осях координат.

4x – y – 3z = 12 a=3, b=-12, c=-4.

Нормальное уравнение плоскости.

Пусть дана некоторая плоскость Q. Из начала координат проведем перпендикуляр ОР к плоскости. Пусть заданы |ОР|=р и вектор : . Возьмем текущую точку M(x, y, z) плоскости и вычислим скалярное произведение векторов и : .

Если спроектировать точку М на направление , то попадем в точку Р. Т.о., получим уравнение

(9).

Задание линии в пространстве.

Линию L в пространстве можно задать как пересечение двух поверхностей. Пусть точка M(x, y, z), лежащая на линии L, принадлежит как поверхности Р1, так и поверхности Р2. Тогда координаты этой точки должны удовлетворять уравнениям обеих поверхностей. Поэтому под уравнением линии L в пространстве понимают совокупность двух уравнений, каждое из которых является уравнением соответствующей поверхности:

Линии L принадлежат те и только те точки, координаты которых удовлетворяют обоим уравнениям в (*). Позже мы рассмотрим и другие способы задания линий в пространстве.

Пучок плоскостей.

Пучок плоскостей – множество всех плоскостей, проходящих через заданную прямую – ось пучка.

Чтобы задать пучок плоскостей, достаточно задать его ось. Пусть уравнение этой прямой задано в общем виде:

.

Составить уравнение пучка – значит составить уравнение, из которого можно получить при дополнительном условии уравнение любой плоскости пучка, кроме, б.м. одной. Умножим II уравнение на л и сложим с I уравнением:

A 1 x + B 1 y + C 1 z + D 1 + л(A 2 x + B 2 y + C 2 z + D 2) = 0 (1) или

(A 1 + лA 2)x + (B 1 + лB 2)y + (C 1 + лC 2)z + (D 1 + лD 2) = 0 (2).

л – параметр – число, которое может принимать действительные значения. При любом выбранном значении л уравнения (1) и (2) линейные, т.е. это – уравнения некоторой плоскости.

1. Покажем , что эта плоскость проходит через ось пучка L. Возьмем произвольную точку M 0 (x 0 , y 0 , z 0) L. Следовательно, М 0 Р 1 и М 0 Р 2 . Значит:

Следовательно, плоскость, описываемая уравнением (1) или (2) принадлежит пучку.

2. Можно доказать и обратное : всякая плоскость, проходящая через прямую L, описывается уравнением (1) при соответствующем выборе параметра л.

Пример 1 . Составить уравнение плоскости, проходящей через линию пересечения плоскостей x + y + 5z – 1 = 0 и 2x + 3y – z + 2 = 0 и через точку М(3, 2, 1).

Записываем уравнение пучка: x + y + 5z – 1 + л(2x + 3y – z + 2) = 0. Для нахождения л учтем, что М Р:

Всякую поверхность в пространстве можно рассматривать как геометрическое место точек, обладающим некоторым свойством, общим для всех точек.

Пример 1.

Сфера – множество точек, равноудаленных от данной точки С (центра). С(x 0 ,y 0 ,z 0). По определению |СМ|=R или или . Данное уравнение выполняется для всех точек сферы и только для них. Если x 0 =0, y 0 =0, z 0 =0, то .

Аналогичным образом можно составить уравнение любой поверхности, если выбрана система координат.

Пример 2. x=0 – уравнение плоскости YOZ.

Выразив геометрическое определение поверхности через координаты ее текущей точки и собрав все слагаемые в одной части, получим равенство вида

F(x,y,z)=0 (*),

Это - уравнение поверхности , если координаты всех точек поверхности удовлетворяют данному равенству, а координаты точек, не лежащих на поверхности, не удовлетворяют.

Т.о., каждой поверхности в выбранной системе координат соответствует свое уравнение. Однако, не каждому уравнению вида (*) соответствует поверхность в смысле определения.

Примеры :

2x – y + z – 3 = 0 (плоскость)

x 2 + y 2 – z 2 = 0 (конус)

x 2 + y 2 +3 = 0 – координаты ни одной точки не удовлетворяют.

x 2 + y 2 + z 2 =0 – единственная точка (0,0,0).

x 2 = 3y 2 = 0 – прямая (ось OZ).

Рассмотрим прямоугольную систему координат Oxyz в пространстве.

Уравнением поверхности называется такое уравнение F(x,y,z)=0, которому удовлетворяют координаты каждой точки, лежащей на поверхности, и не удовлетворяют координаты точек, не лежащих на поверхности.

Например, сфера – это геометрическое место точек, равноудаленных от некоторой точки, называемой центром сферы. Так все точки, удовлетворяющие уравнению
лежат на сфере с центром в точке О(0.0.0) и радиусомR (Рис.1).

Координаты любой точки, не лежащей на данной сфере, не удовлетворяют этому уравнению.

Линию в пространстве можно рассматривать как линию пересечения двух поверхностей. Так на рисунке 1 пересечением сферы с плоскостью Oxy является окружность с центром в точке О и радиусом R.

Простейшей поверхностью является плоскость , простейшей линией в пространстве является прямая .

2. Плоскость в пространстве.

2.1. Уравнение плоскости по точке и нормальному вектору.

В системе координат Oxyz рассмотрим плоскость (Рис.2). Ее положение определяется заданием вектораперпендикулярного этой плоскости, и фиксированной точки
лежащей в этой плоскости. Вектор
перпендикулярный плоскости
называетсянормальным вектором (вектором-нормалью). Рассмотрим произвольную точку M(x,y,z) плоскости . Вектор
лежащий в плоскости
будет перпендикулярен вектору-нормалиИспользуя условие ортогональности векторов
получим уравнение:где

Уравнение (2.2.1 )

называется уравнением плоскости по точке и нормальному вектору.

Если в уравнении (2.1.1) раскроем скобки и перегруппируем члены, то получим уравнение илиAx + By + Cz + D = 0, где

D =
.

2.2. Общее уравнение плоскости.

Уравнение Ax + By + Cz +D = 0 (2.2.1 )

называется общим уравнением плоскости, где
- нормальный вектор.

Рассмотрим частные случаи этого уравнения.

1).D = 0. Уравнение имеет вид: Ax + By + Cz = 0. Такая плоскость проходит через начало координат. Ее нормальный вектор

2). С = 0:Ax + By + D = 0
плоскость параллельна оси oz (Рис.3).

3). B = 0: Ax + Cz + D = 0
плоскость параллельна оси oy (Рис.4).

4). A = 0: By + Cz + D = 0

плоскость параллельна оси ox (Рис.5).

5). C = D = 0: Ax + By = 0
плоскость проходит через ось oz (Рис.6).

6).B = D = 0: Ax + Cz = 0
плоскость проходит через ось oy (Рис.7).

7). A = D = 0: By + Cz = 0
плоскость проходит через ось ox (Рис.8).

8).A = B = 0: Cz + D = 0

||oz
плоскость параллельна плоскостиOxy (Рис.9).

9). B = C = 0: Ax + D = 0

||ox
плоскость

параллельна плоскостиOyz (Рис.10).

10).A = C = 0: By + D = 0

||oy
плоскость параллельна плоскостиOxz (Рис.11).

Пример 1. Составить уравнение плоскости, проходящей через точку
перпендикулярно вектору
Найти точки пересечения этой плоскости с осями координат.

Решение. По формуле (2.1.1) имеем

2x – y + 3z + 3 = 0.

Для того, чтобы найти пересечение этой плоскости с осью ox, подставим в полученное уравнение y = 0, z = 0. Имеем 2x + 3 = 0; x = – 1,5.

Точка пересечения искомой плоскости с осью ox имеет координаты:

Найдем пересечение плоскости с осью oy. Для этого возьмем x = 0; z = 0. Имеем

– y + 3 = 0 y = 3. Итак,

Для нахождения точки пересечения с осью oz возьмем x = 0; y = 0
3z + 3 = 0
z = – 1. Итак,

Ответ: 2x – y + 3z + 3 = 0,
,
,
.

Пример 2. Исследовать плоскости, заданные уравнениями:

a). 3x – y + 2z = 0

б). 2x + z – 1 = 0

в). – y + 5 = 0

Решение. а). Данная плоскость проходит через начало координат (D = 0) и имеет нормальный вектор

б). В уравнении
коэффициентB = 0. Следовательно,
Плоскость параллельна осиoy.

в). В уравнении – y + 5 = 0 коэффициенты A = 0, C = 0. Значит

Плоскость параллельна плоскости oxz.

г). Уравнение x = 0 задает плоскость oyz, так как при B = 0, C = 0 плоскость параллельна плоскости oyz, а из условия D = 0 следует, что плоскость проходит через начало координат.

Пример 3. Составить уравнение плоскости, проходящей через точку A(2,3,1) и перпендикулярной вектору
гдеB(1,0, –1), C(–2,2,0).

Решение. Найдем вектор

Вектор
является нормальным вектором искомой плоскости, проходящей через точкуA(2,3,1). По формуле (2.1.1) имеем:

– 3x + 2y + z + 6 – 6 – 1 = 0
– 3x + 2y + z – 1 = 0 3x – 2y – z + 1 = 0.

Ответ: 3x – 2y – z + 1 = 0.

2.3. Уравнение плоскости, проходящей через три точки.

Три точки, не лежащие на одной прямой, определяют единственную плоскость (см. рис. 12). Пусть точки не лежат на одной прямой. Чтобы составить уравнение плоскости, нужно знать одну точку плоскости и нормальный вектор. Точки, лежащие на плоскости, известны:
Можно взять любую. Для нахождения нормального вектора воспользуемся определением векторного произведения векторов. Пусть
Тогдаследовательно,
Зная координаты точки
и нормального векторанайдем уравнение плоскости, применяя формулу (2.1.1).

Другим способом уравнение плоскости, проходящей через три заданные точки, можно получить, используя условие компланарности трех векторов. Действительно, векторы
где M(x,y,z) – произвольная точка искомой плоскости, компланарны (см. рис.13). Следовательно, их смешанное произведение равно 0:

Применив формулу смешанного произведения в координатной форме, получим:

(2.3.1)

Пример 1. Составить уравнение плоскости, проходящей через точки

Решение. По формуле (2.3.1) имеем

Раскрыв определитель, получим:

Полученная плоскость параллельна оси oy. Ее нормальный вектор

Ответ : x + z – 4 = 0.

2.4. Угол между двумя прямыми.

Две плоскости, пересекаясь, образуют четыре двугранных угла, равных попарно (см. рис. 14). Один из двугранных углов равен углу между нормальными векторами этих плоскостей.

Пусть даны плоскости:

Их нормальные векторы имеют координаты:

Из векторной алгебры известно, что
или

(2.4.1)

Пример: Найти угол между плоскостями:

Решение: Найдем координаты нормальных векторов: По формуле (2.4.1) имеем:


Один из двугранных углов, полученных при пересечении данных плоскостей, равен
Можно найти и второй угол:

Ответ :

2.5. Условие параллельности двух плоскостей.

Пусть даны две плоскости:

и

Если эти плоскости параллельны, то их нормальные векторы

коллинеарны (см. рис.15).

Если векторы коллинеарны, то их соответствующие координаты пропорциональны:

(2.5.1 )

Верно и обратное утверждение: если нормальные векторы плоскостей коллинеарны, то плоскости параллельны.

Пример 1. Какие из указанных плоскостей параллельны:

Решение: а). Выпишем координаты нормальных векторов.

Проверим их коллинеарность:

Отсюда следует, что

б). Выпишем координаты

Проверим коллинеарность:

Векторы
не коллинеарны, плоскости
не параллельны.

Пример 2. Составить уравнение плоскости, проходящей через точку

M(2, 3, –2) параллельно плоскости

Решение: Искомая плоскость параллельна данной плоскости. Поэтому нормальный вектор плоскости можно взять за нормальный вектор искомой плоскости.
Применяя уравнение (2.1.1), получим:

Ответ:
.

Пример 3. Определить при каких a и b плоскости параллельны:

Решение: Выпишем координаты нормальных векторов:

Так как плоскости параллельны, то векторы
коллинеарны.По условию (2.5.1)
Отсюда b = – 2 ; a = 3.

Ответ: a = 3; b = –2.

2.6. Условие перпендикулярности двух плоскостей.

Если плоскости
перпендикулярны, то их нормальные векторы
тоже перпендикулярны (см. рис.16).. Отсюда следует, что их скалярное произведение равно нулю, т.е.
или в координатах:


Это условие перпендикулярности двух плоскостей. Обратное утверждение также верно, то есть, если выполняется условие (2.6.1), то векторы
следовательно,

Пример 1. Какие из указанных плоскостей перпендикулярны:

Решение: а). Запишем координаты нормальных векторов:

Проверим их ортогональность:

Отсюда следует, что

б). Запишем координаты нормальных векторов:

то есть плоскости
неперпендикулярны.

Пример 2. При каком значении m плоскости перпендикулярны

Решение: Запишем координаты нормальных векторов:

Найдем их скалярное произведение:

Так как плоскости перпендикулярны, то
Следовательно, 4 – 2m = 0;

Ответ: m = 2.

2.7. Расстояние от точки до плоскости.

Пусть дана точка
и плоскость

Расстояние от точки (см. рис.17) находим по формуле:

(2.7.1 )

Пример: Найти расстояние от точки M(3, 9, 1) до плоскости

Решение: Применяем формулу (2.7.1), где A = 1, B = – 2, C = 2, D = –3,

Ответ:

Уравнение
поверхности
F(x,y,z)=0
.

Плоскость. Уравнение плоскости по точке и нормальному вектору

Положение плоскости в пространстве
можно определить, задав какую-либо
точку М0 на плоскости и какой-либо
нормальный вектор. Нормальным
вектором плоскости называется любой
вектор, перпендикулярный к этой
плоскости.

Пусть точка М0(х0,у0,z0) лежит в плоскости.
Введем в рассмотрение произвольную точку
плоскости М(х,у,z).
z
n (A,B,C)
M
y
M0
x

Векторы n(A, B, C) и M 0 M (x x0 , y y0 , z z0)
ортогональны.
A(x-x0)+B(y-y0)+C(z-z0)=0
Уравнение плоскости по точке и
нормальному вектору.

Пример 1:

проходящей через точку М(2,3,-1)
перпендикулярно вектору n(1,2, 3)
Решение:
По формуле: 1(х-2)+2(у-3)-3(z+1)=0
или х+2у-3z-11=0

Пример 2:
Написать уравнение плоскости,
проходящей через точку М(1,0,0)
перпендикулярно вектору n(2,0,1) .
Решение:
Получаем: 2(х-1)+0(у-0)+1(z-0)=0
или 2х+z-2=0.

Общее уравнение плоскости

A(x-x0)+B(y-y0)+C(z-z0)=0, раскроем в нем
скобки и обозначим –Aх0-Ву0-Сz0=D.
Приведем уравнение рассматриваемой
плоскости к виду:
Ax+By+Cz+D=0 - общее уравнение плоскости.
Коэффициенты А,В,С являются
координатами нормального вектора
плоскости.

Частные случаи общего уравнения плоскости

1. Пусть А=0, В,С,D≠0. Тогда: By+Cz+D=0.
Нормальный вектор плоскости n(0, B, C)
перпендикулярен оси ОХ и, следовательно,
плоскость параллельна оси ОХ.
z
y
x

Уравнения Ax+Cz+D=0 и Ax+By+D=0
выражают плоскости, параллельные осям ОУ
и OZ.
2. D=0, А,В,С≠0. Уравнение плоскости:
Ax+By+Cz=0. Точка О(0,0,0) удовлетворяет
уравнению плоскости. Уравнение задает
плоскость, проходящую через начало
координат.
3. А=0, D=0, В,С≠0. Уравнение плоскости:
By+Cz=0. Плоскость одновременно
параллельна оси ОХ и проходит через начало
координат, т.е. проходит через ось ОХ.

Аналогично уравнения Ax+Cz=0 и Ax+By=0
выражают плоскости, проходящие через оси
OY и OZ.
4. А=0, В=0, С,D≠0. Уравнение плоскости:
Cz+D=0. Плоскость одновременно
параллельна осям ОХ и ОУ, т.е. координатной
плоскости ОХУ. Аналогично уравнения
By+D=0, и Ax+D=0 выражают плоскости,
параллельные координатным плоскостям OXZ
и OYZ.

Пример:
Z=3
z
3
y
x

А=0, В=0, D=0, С≠0.
Уравнение плоскости: Cz=0 или z=0. Это
плоскость одновременно параллельная
координатной плоскости ОХУ, т.е. сама
координатная плоскость ОХУ. Аналогично:
у=0 и х=0 – уравнения координатных
плоскостей OXZ и OYZ.

Уравнение плоскости, проходящей через три заданные точки

Три точки, не лежащие на одной прямойM1(x1,y1,z1), M2(x2,y2,z2), M3(x3,y3,z3).
M(x,y,z) – произвольная точка плоскости.
z
M2
М1
М3
М

Векторы M1M , M 1M 2 , M 1 M 3 ,
компланарны. Их смешанное
произведение равно нулю.
x x1
x2 x1
y y1
y2 y1
z z1
z 2 z1 0
x3 x1
y3 y1
z3 z1
Это искомое уравнение плоскости,
проходящей через три заданные точки.

Пример. Написать уравнение плоскости,
проходящей через точки M1(1,2,1),
M2(0,1,4), M3(-3,3,2).
Решение: Используя полученное
уравнение, имеем:
x 1 y 2 z 1
1
4
2
1
3 0
1
Или 4х+11у+5z-31=0

Угол между плоскостями, условие параллельности и перпендикулярности двух плоскостей

Две плоскости: A1x+B1y+C1z+D1=0 и
A2x+B2y+C2z+D2=0. Их нормальные
векторы n1 (A1 , B1 , C1) , n2 (A2 , B2 , C2)
Углом между двумя плоскостями
называется угол между их нормальными
векторами
n1 n2
Cosω=
n1 n2
A1 A2 B1 B2 C1C2
A12 B12 C12 A22 B22 C22

Если плоскости перпендикулярны, то их
нормальные векторы тоже
перпендикулярны, и поэтому их
скалярное произведение равно нулю:
А1·А2+В1·В2+С1·С2=0.
Если плоскости параллельны, то
параллельны их нормальные векторы, а
значит, выполняются соотношения:
A1 B1 C1
A2 B2 C2

Пример: Написать уравнение плоскости,
проходящей через точку M(0,1,4)
параллельно плоскости 2х-4у-z+1=0.
Решение: Вектор нормали данной
плоскости будет являться нормальным
вектором и для искомой плоскости.
Используем уравнение плоскости по точке
и нормальному вектору:
2(х-0)-4(у-1)-(z-4)=0 или 2х-4у-z+8=0.

.Расстояние от точки до плоскости

найти расстояние от точки М(х0,у0,z0) до
плоскости: Ax+By+Cz+D=0. Опустим из точки
М перпендикуляр МК на плоскость (d).
z
M
n
K
x
y

Пусть точка К имеет координаты х1,у1,z1
n KM n KM d n
Или n KM А(х0-х1)+В(у0-у1)+С(z0-z1)=
= Ax0+By0+Cz0-(Ax1+By1+Cz1).
Точка К лежит в плоскости, ее
координаты удовлетворяют уравнению
плоскости, то есть Ax1+By1+Cz1+D=0.

Учитывая это, получаем: n KM
Ax0+By0+Cz0+D-(Ax1+By1+Cz1+D)=
Ax0+By0+Cz0+D.
Тогда: Ax0+By0+Cz0+D= d n ;
d
Ax0 By 0 Cz0 D
A B C
2
2
2

Пример:
Найти расстояние от точки М (-1,2,3) до
плоскости 2х-6у-3z+2=0.
Решение:
Воспользуемся формулой и подставим в
уравнение плоскости координаты
заданной точки:
d
2 (1) (6) 2 3 (3) 2
2 2 (6) 2 32
21
=
=3
7

Общие уравнения прямой в пространстве

Прямая в пространстве рассматривается
как линия пересечения двух плоскостей.
A1 x B1 y C1 z D1 0
A2 x B2 y C2 z D2 0
Система задает прямую в том случае, если
плоскости не являются параллельными,
A1 B1 C1
A2 B2 C 2

Канонические уравнения прямой в пространстве

Положение прямой L в пространстве
однозначно определено, если известна
какая-нибудь точка М0(х0,у0,z0), лежащая на
прямой L, и задан направляющий вектор
S (m, n, p)
S
M
M0

М(х,у,z) – произвольная точка на этой
прямой. Тогда векторы
M 0 M =(х-х0, у-у0, z-z0) и S (m, n, p)
будут коллинеарны:
x x0 y y 0 z z 0
m
n
p
- канонические уравнения прямой в
пространстве или уравнения прямой по
точке и направляющему вектору.

Пример 1:

через точку М(1,2,3), параллельно прямой
x 1 y 7 z
2
5
3
Решение:
Так как прямые параллельны, то S (2,5,3)
является направляющим вектором и искомой
прямой. Следовательно:
x 1 y 2 z 3
2
5
3

Пример 2:
Написать уравнение прямой L, проходящей
через точку М(1,2,3), и имеющей
направляющий вектор S (2,0,5)
Решение:
Воспользуемся формулой:
x 1 z 3
и
2
5
у-2=0,
то есть 5х-2z+1=0 и у=2. Это означает, что
прямая лежит в плоскости у=2

Уравнения прямой в пространстве по двум точкам

Заданы две точки М1(х1,у1,z1) и М2(х2,у2,z2).
Написать уравнение прямой, проходящей
через две точки.
М1
М2

Прямая проходит через точку М1 и имеет в
качестве направляющего вектора M 1M 2
Уравнение имеет вид:
x x1
y y1
z z1
x2 x1 y 2 y1 z 2 z1
Пример: Написать уравнение прямой,
проходящей через точки М1(1,4,-3) и
М2(2,1,1).
Решение: Воспользуемся формулой
x 2 y 1 z 1
1
3
4

Параметрические уравнения прямой в пространстве

Рассмотрим канонические уравнения
прямой: x x0 y y0 z z 0
m
n
p
Введем параметр t:
x x0 y y 0 z z 0
t
m
n
p
-∞ < t <+∞.

Получим:
x x0
t
y m y
0
t
n
z z0 t
p
или
x x0 mt
y y0 nt
z z pt
0
параметрические уравнения прямой в
пространстве. В таком виде их часто
используют в механике и физике, параметр t,
обычно, время.

Приведение общих уравнений прямой в пространстве к каноническому виду

Заданы общие уравнения прямой в
пространстве
A1 x B1 y C1 z D1 0 (1)
A2 x B2 y C2 z D2 0
Привести их к каноническому виду
x x0 y y 0 z z 0
m
n
p

Для решения задачи нужно:
1. найти координаты (х0,у0,z0) какой-либо
точки, лежащей на прямой,
2. найти координаты (m,n,p) направляющего
вектора этой прямой.
Чтобы найти координаты точки М0 придадим
одной из координат произвольное численное
значение, например полагаем х=х0. Внеся его
в систему (1), получаем систему двух
уравнений с неизвестными у и z. Решаем ее.
В результате на прямой найдена точка
М0(х0,у0,z0).

В качестве направляющего вектора примем
вектор, который является результатом
векторного произведения нормальных
векторов двух плоскостей.
S (m, n, p) n1 n2
i
A1
j
B1
A2
B2
k
B1
C1
B2
C2
C1
C2
i
A1
C1
A2
C2
j
A1
B1
A2
B2
k

Получаем координаты направляющего
вектора:
A1 B1
A1 C1
B1 C1
p
n
m
A2 B2
A2 C2
B2 C2
Общие уравнения прямой, записанные в
каноническом виде:
x x0
y y0
z z0
B1 C1
C1 A1
A1 B1
B2
C2
C2
A2
A2
B2

Пример: Записать каноническое уравнение
прямой
x 2 y z 5 0
x y z 1 0
Решение: Положим z0=0. Тогда:
x 2 y 5
x y 1
Отсюда: : у0=-6, х0=7. Точка М0, лежащая на
прямой, имеет координаты: (7,-6,0).

Найдем направляющий вектор. Нормальные
векторы плоскостей имеют координаты
n1 (1,2, 1)
Тогда
n2 (1,1,1)
i j k
S n1 n2 1 2 1 3i 2 j k
1 1
1
Канонические уравнения прямой имеют вид:
x 7 y 6 z
3
2
1

Угол между двумя прямыми в пространстве, условие перпендикулярности и параллельности прямых

прямые L1 и L2 заданы в каноническом виде с
направляющими векторами
S 1 (m1 , n1 , p1) и S 2 (m2 , n2 , p2)
x x1 y y1 z z1
m1
n1
p1
x x2 y y 2 z z 2
m2
n2
p2

Углом между двумя прямыми называется угол
между их направляющими векторами.
S1 S 2
cos (L1 , L2) cos(S1 , S 2)
S1 S 2
cos(L1 , L2)
m1m2 n1n2 p1 p2
m12 n12 p12 m22 n22 p22

Прямые перпендикулярны, если
перпендикулярны их направляющие векторы:
То есть S1 S2 0 , или
m1m2+n1n2+p1p2=0.
Прямые параллельны, если параллельны их
направляющие векторы:
m1 n1
p1
m2 n 2 p 2

Пример: Найти угол между прямыми
x 2 y 7
z
1
3
2
и
x 10 y 3 z 5
4
1
2
Решение: Направляющие векторы прямых
имеют координаты: (1,3,-2) и (4,1,2).
Следовательно,
1 4 3 1 (2) 2
3
cos(L1 , L2)
1 9 4 16 1 4 7 16
3
(L1 , L2) arccos
7 16

Угол между прямой и плоскостью

Задана плоскость Р: Ах+Ву+Сz+D=0, и
прямая L:
x x0 y y 0 z z 0
m
n
p
n
S
ω
φ

Углом между прямой и плоскостью
называется угол φ между прямой и проекцией
ее на плоскость.
ω - угол между нормальным вектором
плоскости и направляющим вектором
прямой. ω=π/2-φ. Тогда sinφ=cos(π/2-φ)=
=cosω. Но cosω=cos (n, S)
Тогда
n S
sinφ= cos (n, S)
n S

sinφ =
Am Bn Cp
m 2 n 2 p 2 A2 B 2 C 2
Пример: Найти угол между прямой:
x 2 y 1 z
3
2
6
и плоскостью: 2х+у+2z-5=0.
Решение: Нормальный вектор плоскости
имеет координаты: (2,1,2), направляющий
вектор прямой имеет координаты: (3,2,-6).
sin
6 2 12
4
2
2
2
2
2
2
21
2 1 2 3 2 6

Условие перпендикулярности и параллельности прямой и плоскости.

x x0 y y 0 z z 0
m
n
p
P
Задана прямая L:
и плоскость Р: Ах+Ву+Сz+D=0.
Если прямая параллельна плоскости, то
направляющий вектор прямой
перпендикулярен нормальному вектору
плоскости.
S
n
L

Следовательно, их скалярное произведение
равно нулю: A·m+B·n+C·p=0.
Если прямая перпендикулярна плоскости, то
эти векторы параллельны.
S
n
Р
L
В этом случае:
A B C
m n p

Пример:
Написать уравнение прямой,
проходящей через точку М(1,2,-3),
перпендикулярно плоскости
4х+2у-z+5=0.
Решение:
Так как плоскость перпендикулярна
прямой, то нормальный вектор и
направляющий вектор параллельны:
x 1 y 2 z 3
4
2
1

Разберем типовую задачу.
Даны вершины пирамиды ABCD: А(1,0,0);
B(0,2,0); C(0,0,3), D(2,3,4). Найти:
1. Длину и уравнение ребра АВ,
2. Уравнение и площадь грани АВС,
3. Уравнение и длину высоты, опущенной
из вершины D на грань АВС,
4. Угол между ребром AD и гранью АВС,
5. Объем пирамиды.

Чертеж:
z
D
C
B
A
x
y

1. Введем в рассмотрение вектор AB . Его
координаты: (0-1;2-0;0-0), или (-1;2;0). Длина
ребра АВ равна модулю вектора.
АВ= 1 4 0 5
Уравнение прямой АВ (уравнение прямой по
двум точкам):
x 1 y
1 2
Или 2х+у-2=0

2. Уравнение грани АВС (уравнение
плоскости по трем точкам):
x 1 y z
1 2 0 0
1
0 3
Отсюда: (х-1)∙6-у∙(-3)+z∙2=0,
или 6х+3у+2z-6=0.
Площадь треугольника АВС найдем с
помощью векторного произведения
векторов AB и AC

Координаты вектора AB =(-1;2;0),
вектора AC =(-1,0,3).
1
SΔABC= AB AC
кв.единиц.
2
Векторное произведение:
i
j k
AB AC 1 2 0 6i 3 j 2k
1 0 3

Тогда
1
S ABC 6i 3 j 2k
2
1
7
36 9 4 3,5 êâ.åä.
2
2

Уравнение высоты - уравнение прямой по
точке D(2,3,4) и направляющему вектору. В
качестве направляющего вектора –
нормальный вектор грани АВС: n (6,3,2)
x 2 y 3 z 4
6
3
2
Для нахождения длины высоты используем
формулу:
Ax0 By 0 Cz0 D
d
A2 B 2 C 2

Получим:
d
6 2 3 3 2 4 6
36 9 4
27
3
4. Угол между ребром AD и гранью АВС.
Уравнение грани АВС: 6х+3у+2z-6=0,
нормальный вектор имеет координаты:
(6,3,2). Напишем уравнения прямой,
проходящей через точки А(1,0,0) и D(2,3,4):
x 1 y 0 z 0
2 1 3 0 4 0

Эта прямая имеет направляющий вектор с
координатами:(1,3,4). Тогда
sin
=
Am Bn Cp
m n p A B C
2
2
2
2
6 1 3 3 2 4
12 32 4 2 6 2 32 2 2
arcsin
2
23
7 26
2
=
23
23
26 7 7 26

5. Объем пирамиды равен 1/6 объема
параллелепипеда, построенного на
векторах, как на сторонах. Используем
смешанное произведение векторов.
Координаты векторов: AB =(-1,2,0),
AC○ =(-1,0,3), AD =(1,3,4)
○ Vпараллелепипеда
1 2 0
1 0 3 23
1
3 4
○ Vпирамиды=23/6 куб.ед.

Чтобы получить общее уравнение плоскости, разберём плоскость, проходящую через заданную точку.

Пусть в пространстве есть три уже известные нам оси координат - Ox , Oy и Oz . Подержим лист бумаги так, чтобы он оставался плоским. Плоскостью будет сам лист и его продолжение во всех направлениях.

Пусть P произвольная плоскость в пространстве. Всякий перпендикулярный ей вектор называется вектором нормали к этой плоскости. Естественно, речь идёт о ненулевом векторе.

Если известна какая-нибудь точка плоскости P и какой-нибудь вектор нормали к ней, то этими двумя условиями плоскость в пространстве вполне определена (через заданную точку можно провести единственную плоскость, перпендикулярную данному вектору). Общее уравнение плоскости будет иметь вид:

Итак, условия, которыми задаётся уравнение плоскости, есть. Чтобы получить само уравнение плоскости , имеющее приведённый выше вид, возьмём на плоскости P произвольную точку M с переменными координатами x , y , z . Эта точка принадлежит плоскости только в том случае, когда вектор перпендикулярен вектору (рис. 1). Для этого, согласно условию перпендикулярности векторов, необходимо и достаточно, чтобы скалярное произведение этих векторов было равно нулю, то есть

Вектор задан по условию. Координаты вектора найдём по формуле :

.

Теперь, используя формулу скалярного произведения векторов , выразим скалярное произведение в координатной форме:

Так как точка M(x; y; z) выбрана на плоскости произвольно, то последнему уравнению удовлетворяют координаты любой точки, лежащей на плоскости P . Для точки N , не лежащей на заданной плоскости, , т.е. равенство (1) нарушается.

Пример 1. Составить уравнение плоскости, проходящей через точку и перпендикулярной вектору .

Решение. Используем формулу (1), еще раз посмотрим на неё:

В этой формуле числа A , B и C координаты вектора , а числа x 0 , y 0 и z 0 - координаты точки .

Вычисления очень простые: подставляем эти числа в формулу и получаем

Умножаем всё, что нужно умножить и складываем просто числа (которые без букв). Результат:

.

Требуемое уравнение плоскости в этом примере оказалось выражено общим уравнением первой степени относительно переменных координат x, y, z произвольной точки плоскости.

Итак, уравнение вида

называется общим уравнением плоскости .

Пример 2. Построить в прямоугольной декартовой системе координат плоскость, заданную уравнением .

Решение. Для построения плоскости необходимо и достаточно знать какие-либо три её точки, не лежащие на одной прямой, например, точки пересечения плоскости с осями координат.

Как найти эти точки? Чтобы найти точку пересечения с осью Oz , нужно в уравнение, данное в условии задачи, вместо икс и игрека подставить нули: x = y = 0 . Поэтому получаем z = 6 . Таким образом, заданная плоскость пересекает ось Oz в точке A (0; 0; 6) .

Точно так же находим точку пересечения плоскости с осью Oy . При x = z = 0 получаем y = −3 , то есть точку B (0; −3; 0) .

И, наконец, находим точку пересечения нашей плоскости с осью Ox . При y = z = 0 получим x = 2 , то есть точку C (2; 0; 0) . По трём полученным в нашем решении точкам A (0; 0; 6) , B (0; −3; 0) и C (2; 0; 0) строим заданную плоскость.

Рассмотрим теперь частные случаи общего уравнения плоскости . Это случаи, когда те или иные коэффициенты уравнения (2) обращаются в нуль.

1. При D = 0 уравнение определяет плоскость, проходящую через начало координат, так как координаты точки 0 (0; 0; 0) удовлетворяют этому уравнению.

2. При A = 0 уравнение определяет плоскость, параллельную оси Ox , поскольку вектор нормали этой плоскости перпендикулярен оси Ox (его проекция на ось Ox равна нулю). Аналогично, при B = 0 плоскость параллельная оси Oy , а при C = 0 плоскость параллельна оси Oz .

3. При A = D = 0 уравнение определяет плоскость, проходящую через ось Ox , поскольку она параллельна оси Ox (A = D = 0). Аналогично, плоскость проходит через ось Oy , а плоскость через ось Oz .

4. При A = B = 0 уравнение определяет плоскость, параллельную координатной плоскости xOy , поскольку она параллельна осям Ox (A = 0) и Oy (B = 0). Аналогично, плоскость параллельна плоскости yOz , а плоскость - плоскости xOz .

5. При A = B = D = 0 уравнение (или z = 0) определяет координатную плоскость xOy , так как она параллельна плоскости xOy (A = B = 0) и проходит через начало координат (D = 0). Аналогично, уравнение y = 0 в пространстве определяет координатную плоскость xOz , а уравнение x = 0 - координатную плоскость yOz .

Пример 3. Составить уравнение плоскости P , проходящей через ось Oy и точку .

Решение. Итак, плоскость проходит через ось Oy . Поэтому в её уравнении y = 0 и это уравнение имеет вид . Для определения коэффициентов A и C воспользуемся тем, что точка принадлежит плоскости P .

Поэтому среди её координат есть такие, которые можно подставить в уравнению плоскости, которое мы уже вывели (). Смотрим ещё раз на координаты точки:

M 0 (2; −4; 3) .

Среди них x = 2 , z = 3 . Подставляем их в уравнение общего вида и получаем уравнение для нашего частного случая:

2A + 3C = 0 .

Оставляем 2A в левой части уравнения, переносим 3C в правую часть и получаем

A = −1,5C .

Подставив найденное значение A в уравнение , получим

или .

Это и есть уравнение, требуемое в условии примера.

Решить задачу на уравнения плоскости самостоятельно, а затем посмотреть решение

Пример 4. Определить плоскость (или плоскости, если больше одной) относительно координатных осей или координатных плоскостей, если плоскость (плоскости) задана уравнением .

Решения типичных задач, которые бывают на контрольных работах - в пособии "Задачи на плоскость: параллельность, перпендикулярность, пересечение трёх плоскостей в одной точке" .

Уравнение плоскости, проходящей через три точки

Как уже упоминалось, необходимым и достаточным условием для построения плоскости, кроме одной точки и вектора нормали, являются также три точки, не лежащие на одной прямой.

Пусть даны три различные точки , и , не лежащие на одной прямой. Так как указанные три точки не лежат на одной прямой, векторы и не коллинеарны, а поэтому любая точка плоскости лежит в одной плоскости с точками , и тогда и только тогда, когда векторы , и компланарны, т.е. тогда и только тогда, когда смешанное произведение этих векторов равно нулю.

Используя выражение смешанного произведения в координатах, получим уравнение плоскости

(3)

После раскрытия определителя это уравнение становится уравнением вида (2), т.е. общим уравнением плоскости.

Пример 5. Составить уравнение плоскости, проходящей через три данные точки, не лежащие на одной прямой:

и определить частный случай общего уравнения прямой, если такой имеет место.

Решение. По формуле (3) имеем:

Нормальное уравнение плоскости. Расстояние от точки до плоскости

Нормальным уравнением плоскости называется её уравнение, записанное в виде

Всякое уравнение первой степени относительно координат x, y, z

Ax + By + Cz +D = 0 (3.1)

задает плоскость, и наоборот: всякая плоскость может быть представлена уравнением (3.1), которое называется уравнением плоскости .

Вектор n (A, B, C), ортогональный плоскости, называется нормальным вектором плоскости. В уравнении (3.1) коэффициенты A, B, C одновременно не равны 0.

Особые случаи уравнения (3.1):

1. D = 0, Ax+By+Cz = 0 - плоскость проходит через начало координат.

2. C = 0, Ax+By+D = 0 - плоскость параллельна оси Oz.

3. C = D = 0, Ax +By = 0 - плоскость проходит через ось Oz.

4. B = C = 0, Ax + D = 0 - плоскость параллельна плоскости Oyz.

Уравнения координатных плоскостей: x = 0, y = 0, z = 0.

Прямая в пространстве может быть задана:

1) как линия пересечения двух плоскостей,т.е. системой уравнений:

A 1 x + B 1 y + C 1 z + D 1 = 0, A 2 x + B 2 y + C 2 z + D 2 = 0; (3.2)

2) двумя своими точками M 1 (x 1 , y 1 , z 1) и M 2 (x 2 , y 2 , z 2), тогда прямая, через них проходящая, задается уравнениями:

= ; (3.3)

3) точкой M 1 (x 1 , y 1 , z 1), ей принадлежащей, и вектором a (m, n, р), ей коллинеарным. Тогда прямая определяется уравнениями:

. (3.4)

Уравнения (3.4) называются каноническими уравнениями прямой .

Вектор a называется направляющим вектором прямой .

Параметрические получим, приравняв каждое из отношений (3.4) параметру t:

x = x 1 +mt, y = y 1 + nt, z = z 1 + рt. (3.5)

Решая систему (3.2) как систему линейных уравнений относительно неизвестных x и y , приходим к уравнениям прямой в проекциях или к приведенным уравнениям прямой :

x = mz + a, y = nz + b. (3.6)

От уравнений (3.6) можно перейти к каноническим уравнениям, находя z из каждого уравнения и приравнивая полученные значения:

.

От общих уравнений (3.2) можно переходить к каноническим и другим способом, если найти какую-либо точку этой прямой и ее направляющий n = [n 1 , n 2 ], где n 1 (A 1 , B 1 , C 1) и n 2 (A 2 , B 2 , C 2) - нормальные векторы заданных плоскостей. Если один из знаменателей m, n или р в уравнениях (3.4) окажется равным нулю, то числитель соответствующей дроби надо положить равным нулю, т.е. система

равносильна системе ; такая прямая перпендикулярна к оси Ох.

Система равносильна системе x = x 1 , y = y 1 ; прямая параллельна оси Oz.

Пример 1.15 . Cоставьте уравнение плоскости, зная, что точка А(1,-1,3) служит основанием перпендикуляра, проведенного из начала координат к этой плоскости.

Решение. По условию задачи вектор ОА (1,-1,3) является нормальным вектором плоскости, тогда ее уравнение можно записать в виде
x-y+3z+D=0. Подставив координаты точки А(1,-1,3), принадлежащей плоскости, найдем D: 1-(-1)+3×3+D = 0 , D = -11. Итак, x-y+3z-11=0.

Пример 1.16 . Составьте уравнение плоскости, проходящей через ось Оz и образующей с плоскостью 2x+y- z-7=0 угол 60 о.

Решение. Плоскость, проходящая через ось Oz, задается уравнением Ax+By=0, где А и В одновременно не обращаются в нуль. Пусть В не
равно 0, A/Bx+y=0. По формуле косинуса угла между двумя плоскостями

.

Решая квадратное уравнение 3m 2 + 8m - 3 = 0, находим его корни
m 1 = 1/3, m 2 = -3, откуда получаем две плоскости 1/3x+y = 0 и -3x+y = 0.

Пример 1.17. Составьте канонические уравнения прямой:
5x + y + z = 0, 2x + 3y - 2z + 5 = 0.

Решение. Канонические уравнения прямой имеют вид:

где m, n, р - координаты направляющего вектора прямой, x 1 , y 1 , z 1 - координаты какой-либо точки, принадлежащей прямой. Прямая задана как линия пересечения двух плоскостей. Чтобы найти точку, принадлежащую прямой, фиксируют одну из координат (проще всего положить, например, x=0) и полученную систему решают как систему линейных уравнений с двумя неизвестными. Итак, пусть x=0, тогда y + z = 0, 3y - 2z+ 5 = 0, откуда y=-1, z=1. Координаты точки М(x 1 , y 1 , z 1), принадлежащей данной прямой, мы нашли: M (0,-1,1). Направляющий вектор прямой легко найти, зная нормальные векторы исходных плоскостей n 1 (5,1,1) и n 2 (2,3,-2). Тогда

Канонические уравнения прямой имеют вид: x/(-5) = (y + 1)/12 =
= (z - 1)/13.

Пример 1.18 . В пучке, определяемом плоскостями 2х-у+5z-3=0 и х+у+2z+1=0, найти две перпендикулярные плоскости, одна из которых проходит через точку М(1,0,1).

Решение. Уравнение пучка, определяемого данными плоскостями, имеет вид u(2х-у+5z-3) + v(х+у+2z+1)=0, где u и v не обращаются в нуль одновременно. Перепишем уравнение пучка следующим образом:

(2u +v)x + (- u + v)y + (5u +2v)z - 3u + v = 0.

Для того, чтобы из пучка выделить плоскость, проходящую через точку М, подставим координаты точки М в уравнение пучка. Получим:

(2u+v)×1 + (-u + v)×0 + (5u + 2v)×1 -3u + v =0, или v = - u.

Тогда уравнение плоскости, содержащей M, найдем, подставив v = - u в уравнение пучка:

u(2x-y +5z - 3) - u (x + y +2z +1) = 0.

Т.к. u¹0 (иначе v=0, а это противоречит определению пучка), то имеем уравнение плоскости x-2y+3z-4=0. Вторая плоскость, принадлежащая пучку, должна быть ей перпендикулярна. Запишем условие ортогональности плоскостей:

(2u+ v)×1 + (v - u)×(-2) + (5u +2v)×3 = 0, или v = - 19/5u.

Значит, уравнение второй плоскости имеет вид:

u(2x -y+5z - 3) - 19/5 u(x + y +2z +1) = 0 или 9x +24y + 13z + 34 = 0.