Основные положения гипотезы а и опарина. Современные гипотезы происхождения жизни. й этап. Вводная беседа

10класс

Тип урока - комбинированный

Методы: частично-поисковый, про-блемного изложения, объясни-тельно-иллюстративный.

Цель:

Формирование у учащихся целостной системы знаний о живой природе, ее системной организации и эволюции;

Умения давать аргументированную оценку новой информации по биоло-гическим вопросам;

Воспитание гражданской ответственности, самостоятельности, инициативности

Задачи:

Образовательные : о биологических системах (клетка, организм, вид, экосистема); истории развития современных представлений о живой природе; выдающихся открытиях в биологической науке; роли биологической науки в формировании современной естественнонаучной картины мира; методах научного познания;

Развитие творческихспособностей в процессе изучения выдающихся достижений биологии, вошедших в общечеловеческую культуру; сложных и противоречивых путей развития современных научных взглядов, идей, теорий, концепций, различных гипотез (о сущности и происхождении жизни, человека) в ходе работы с различными источниками информации;

Воспитание убежденности в возможности познания живой природы, необходимости бережного отношения к природной среде, собственному здоровью; уважения к мнению оппонента при обсуждении биологических проблем

ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОБУЧЕНИЯ- УУД

Личностные результаты обучения биологии :

1. воспитание российской гражданской идентичности: патриотизма, любви и уважения к Отечеству, чувства гордости за свою Родину; осознание своей этнической принадлежности; усвоение гуманистических и традиционных ценностей многонационального российского общества; воспитание чувства ответственности и долга перед Родиной;

2. формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учётом устойчивых познавательных интересов;

Метапредметные результаты обучения биологии:

1. умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности;

2. овладение составляющими исследовательской и проектной деятельности, включая умения видеть проблему, ставить вопросы, выдвигать гипотезы;

3. умение работать с разными источниками биологической информации: находить биологическую информацию в различных источниках (тексте учебника, научно популярной литературе, биологических словарях и справочниках), анализировать и

оценивать информацию;

Познавательные : выделение существенных признаков биологических объектов и процессов; приведение доказательств (аргументация) родства человека с млекопитающими животными; взаимосвязи человека и окружающей среды; зависимости здоровья человека от состояния окружающей среды; необходимости защиты окружающей среды; овладение методами биологической науки: наблюдение и описание биологических объектов и процессов; постановка биологических экспериментов и объяснение их результатов.

Регулятивные: умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач; умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ-компетенции).

Коммуникативные: формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, понимание особенностей гендерной социализации в подростковом возрасте, общественно полезной, учебно-исследовательской, творческой и дру-гих видов деятельности.

Технологии: Здоровьесбережения, проблем-ного, раз-вивающего обучения, групповой деятельно-сти

Приемы: анализ, синтез, умозаключение, перевод информации с одного вида в другой, обобщение.

Ход урока

Задачи ИНМ

Показать роль эксперимента в решении науч-ных споров о происхождении жизни.

Использовать в учебном процессе образова-тельную и воспитательную функцию эксперимен-та как метода обучения.

Научить учащихся находить биологические за-кономерности, анализируя единичные факты в определенной логической последовательности.

Что надо знать учителю об эксперименте

Формулировка цели эксперимента

Планирование Эксперимента

Сборка схемы эксперимента

Описание наблюдаемых в эксперименте явле-ний и процессов

Выдвижение гипотезы

Применение знаний в решении эксперимен-тальных задач.

Индуктивное и дедуктивное умозаключение и доказательство

Что надо знать ученику об эксперименте

Отличие эксперимента от наблюдения

Цель (что хотим выяснить)

Ход (что для этого делаем)

Выводы (что выяснили)

Гипотезы о происхождении жизни

Что такое жизнь?

Ответ. Жизнь — способ бытия сущностей (живых организмов), наделенных внутренней активностью, процесс развития тел органического строения с устойчивым преобладанием процессов синтеза над процессами распада, особое состояние материи, достигаемое за счёт следующих свойств. Жизнь — это способ существования белковых тел и нуклеиновых кислот, существенным моментом которой является постоянный обмен веществ с окружающей средой, причем с прекращением этого обмена прекращается и жизнь.

2. Какие гипотезы происхождения жизни вам известны?

Ответ. Различные представления о возникновении жизни можно объединить в пять гипотез:

1) креационизм — Божественное сотворение живого;

2) самопроизвольное зарождение — живые организмы возникают самопроиз-вольно из неживого вещества;

3) гипотеза стационарного состояния — жизнь существовала всегда;

4) гипотеза панспермии — жизнь занесена на нашу планету извне;

5) гипотеза биохимической эволюции — жизнь возникла в результате процессов, подчиняющихся химическим и физическим законам. В настоящее время большинство ученых поддерживают идею абиогенного за-рождения жизни в процессе биохимической эволюции.

3.В чем основной принцип научного метода?

Ответ. Научный метод — это совокупность приемов и операций, используемых при построении системы научных знаний. Основной принцип научного метода — ничего не воспринимать на веру. Любое утверждение либо опровержение чего-либо следует проверить.

4.Почему представление о божественном происхождении жизни нельзя ни подтвердить, ни опровергнуть?

Ответ. Процесс Божественного сотворения мира мыслится как имевший место лишь единожды и поэтому недоступный для исследования. Наука занимается только теми явлениями, которые поддаются наблюдению и экспериментальному исследованию. Следовательно, с научной точки зрения гипотезу Божественного возникновения живого нельзя ни доказать, ни опровергнуть. Главный принцип научного метода — «ничего не принимай на веру». Следовательно, логически не может быть противоречия между научным и религиозным объяснением возникновения жизни, так как эти две сферы мышления взаимно исключают одна другую.

5.Каковы основные положения гипотезы Опарина - Холдейна?

Ответ. В современных условиях возникновение живых существ из неживой природы невозможно. Абиогенное (т. е. без участия живых организмов) возникновение живой материи возможно было только в условиях древней атмосферы и отсутствия живых организмов. В состав древней атмосферы входили метан, аммиак, углекислый газ, водород, пары воды и другие неорганические соединения. Под действием мощных электрических разрядов, ультрафиолетового излучения и высокой радиации из этих веществ могли возникать органические соединения, которые накапливались в океане, образуя «первичный бульон». В «первичном бульоне» из биополимеров образовывались многомолекулярные комплексы — коацерваты. В коацерватные капли из внешней среды попадали ионы металлов, выступавшие в качестве первых катализаторов. Из огромного количества химических соединений, присутствовавших в «первичном бульоне», отбирались наиболее эффективные в каталитическом отношении комбинации молекул, что в конечном счете привело к появлению ферментов. На границе между коацерватами и внешней средой выстраивались молекулы липидов, что приводило к образованию примитивной клеточной мембраны. На определенном этапе белковые пробионты включили в себя нуклеиновые кислоты, создав единые комплексы, что привело к возникновению таких свойств живого, как самовоспроизведение, сохранение наследственной информации и ее передача последующим поколениям. Пробионты, у которых обмен веществ сочетался со способностью к самовоспроизведению, можно уже рассматривать как примитивные проклетки, дальнейшее развитие которых происходило по законам эволюции живой материи.

6.Какие экспериментальные доказательства можно привести в пользу данной гипотезы?

Ответ. В 1953 г. эта гипотеза А. И. Опарина была экспериментально подтверждена опытами американского ученого С. Миллера. В созданной им установке были смоделированы условия, предположительно существовавшие в первичной атмосфере Земли. В результате опытов были получены аминокислоты. Сходные опыты многократно повторялись в различных лабораториях и позволили доказать принципиальную возможность синтеза в таких условиях практически всех мономеров основных биополимеров. В дальнейшем было установлено, что при определенных условиях из мономеров возможен синтез более сложных органических биополимеров: полипептидов, полинуклеотидов, полисахаридов и липидов.

7.В чем отличия гипотезы А. И. Опарина от гипотезы Дж. Холдейна?

Ответ. Дж. Холдейн также выдвинул гипотезу абиогенного зарождения жизни, но, в отличие от А. И. Опарина, он отдавал первенство не белкам — коацерватным системам, способным к обмену веществ, а нуклеиновым кислотам, то есть макромолекулярным системам, способным к самовоспроизводству.

8.Какие доводы приводят оппоненты, критикуя гипотезу Опарина - Холдейна?

Ответ. Гипотеза Опарина - Холдейна имеет и слабую сторону, на которую указывают ее оппоненты. В рамках данной гипотезы не удается объяснить главную проблему: как произошел качественный скачок от неживого к живому. Ведь для саморепродукции нуклеиновых кислот необходимы ферментные белки, а для синтеза белков - нуклеиновые кислоты.

9.Приведите возможные доводы «за» и «против» гипотезы панспермии.

Ответ. Аргументы за:

Жизнь на уровне прокариот появилась на Земле почти сразу же после её формирования, хотя дистанция (в смысле разности в уровне сложности организации) между прокариотами и млекопитающими сравнима с дистанцией от первичного бульона до покариот;

В случае зарождения жизни на какой-либо планете нашей галактики, она, как показывают, например, оценки А.Д.Панова, за срок всего порядка нескольких сот миллионов лет может "заразить" всю галактику;

Находки в некоторых метеоритах артефактов, которые могут интерпретироваться как результат деятельности микроорганизмов (ещё до попадания метеорита на Землю).

Гипотеза панспермии (жизнь занесена на нашу планету извне) не отвечает на главный вопрос, как возникла жизнь, а переносит эту проблему в какое-то другое место Вселенной;

Полное радиомолчание Вселенной;

Поскольку выяснилось, что всей нашей Вселенной всего лишь 13 млрд. лет (т.е. вся Наша Вселенная только в 3 раза старше (!) планеты Земля), то времени на зарождение жизни где-то там вдали... остается совсем мало. До ближайшей к нам звезды а-центавра расстояние - 4 св. года. Современный истребитель (4 скорости звука) будет лететь до этой звезды ~ 800.000 лет.

Материалистические теории происхождения жизни

Проблема происхождения жизни для теорий вечности жизни не существует по той простой причине, что эти тео-рии стирают различия, существующие между живым и не-живым. Поскольку эти теории исходят из единства ком-плекса живое — неживое, для них не существует и вопроса о происхождении одного от другого. Совсем иначе обстоит дело, если принять наличие специфических различий меж-ду живой и неживой материей — в этом случае сам собой возникает вопрос о возникновении этих различий. Разре-шение настоящего вопроса, естественно, неразрывно связа-но с теми представлениями, которые существуют о природе различий между неживой материей и живыми организ-мами.

Вопрос о происхождении жизни для Пфлюгера , как и для современных ученых, сводился к вопросу о происхож-дении белковых веществ и о той внутренней их организа-ции, которая составляет характерное отличие белков живой «протоплазмы». Автор соответственно разбирает различия между «живым» и «мертвым» белком, из которых основное заключается в неустойчивости «живого» белка, его способ-ности к изменениям в отличие от инертного «мертвого» бел-ка. Эти свойства «живого» белка во времена Пфлюгера при-писывали наличию в молекуле белка кислорода. Это воззре-ние в настоящее время считается устаревшим. Из других представлений о различиях между «живым» и «мертвым» белком ученый останавливается на содержании в молекуле «живого» белка группы циана (СМ), и соответственно этому он пытается создать представление о происхождении этого основного для белковой молекулы радикала. В соответствии с этим, исследователь считает, что цианистые соединения возникли еще в то время, когда Земля представляла собой расплавленную или раскаленную массу. Именно при этих температурах в лаборатории удается получить указанные соединения искусственным путем. Впоследствии, при охлаждении земной поверхности, соединения циана с водой и с другими химическими веществами привели к образованию
белковых веществ, наделенных «жизненными» свойствами.

В теории Пфлюгера, в настоящее время устаревшей, ценным является материалистический подход к проблеме происхождения жизни и выделение белка как важнейшей составной части протоплазмы. Происхождение белковых веществ можно представить себе и иначе. И действительно,
вскоре после Пфлюгера появились другие попытки подойти к разрешению этого вопроса с биохимической стороны. Одной из таких попыток является теория английского уче-
ного Дж. Эллена (1899).

Первое появление азотистых соединений на Земле, в противоположность Пфлюгеру, Эллен приурочивает к тому периоду, когда пары воды вследствие охлаждения сгустились в воду и покрыли поверхность Земли. В воде были растворены соли металлов, имеющие первостепенное значение для образования и деятельности белка. В ней же содержалось известное количество углекислоты, которая вступала в соединение с оксидами азота и с аммиаком. Последние
могли образоваться при электрических разрядах, имевших место в атмосфере, содержащей азот.

Уже эти теории, относящиеся к концу прошлого столетия, ясно намечают основное направление, по которому и в настоящее время идет развитие проблемы возникновения
живого.

Самостоятельная работа учащихся (по усмотрению учителя.)

«Изучение вопроса о возникновении микроорганизмов: спонтанное зарождение или биогенез?» (по Н. Грину).

Цель опыта: повторить исследования Спалланцани, дать объективную оценку теориям самозарождения или био-генеза.

Ход опыта: 4 стерильных пробирки с 15 мл питательного бульона.

А пара:

пробирка — открыта, не нагрета.

пробирка — закрыта (ватой и фольгой), не нагрета,

Б пара:

пробирка — открыта, нагрета на кипящей водяной бане 10 мин.

пробирка — закрыта (ватой и фольгой), нагрета на кипящей водяной бане 10 мин.

Все пробирки поместить на 10 дней при 32° С.

Результаты: по капле бульона исследуйте под микроскопом, результаты запищите.

Выводы

1.Сформулируйте гипотезу, которая могла бы объяснить появление микроорганизмов в питательном бульоне.

По какому фактору различаются пробирки 1 и 2, 3 и 4?

По какому фактору различаются пары А и Б?

Какие пробирки служат контролем?

Считаете ли Вы, что данный эксперимент отвечает всем требованиям, предъявляемым к научным исследо-ваниям?

Теории возникновения жизни

Ресурсы

В. Б. ЗАХАРОВ, С. Г. МАМОНТОВ, Н. И. СОНИН, Е. Т. ЗАХАРОВА УЧЕБНИК «БИОЛОГИЯ» ДЛЯ ОБЩЕОБРАЗОВАТЕЛЬНЫХ УЧРЕЖДЕНИЙ (10-11класс) .

А. П. Плехов Биология с основами экологии. Серия «Учебники для вузов. Специальная литература».

Книга для учителя Сивоглазов В.И., Сухова Т.С. Козлова Т. А. Биология: общие закономерности.

Хостинг презентаций

Проблема жизни и живого является объектом исследования многих естественных дисциплин, начиная с биологии и завершая философией, математикой, рассматривающих абстрактные модели феномена живого, а также физикой, определяющей жизнь с позиций физических закономерностей.

Вокруг этой главной проблемы концентрируются все другие более частные проблемы и вопросы, а также строятся философские обобщения и выводы.

В соответствии с двумя мировоззренческими позициями — материалистической и идеалистической — еще в древней философии сложились противоположные концепции происхождения жизни: креационизм и материалистическая теория происхождения органической природы из неорганической.

Сторонники креационизма утверждают, что жизнь возникла в результате акта божественного творения, свидетельством чего является наличие в живых организмах особой силы, управляющей всеми биологическими процессами.

Сторонники происхождения жизни из неживой природы утверждают, что органическая природа возникла благодаря действию естественных законов. Позднее эта концепция была конкретизирована в идее самозарождения жизни.

Концепция самозарождения , несмотря на ошибочность, сыграла позитивную роль; опыты, призванные ее подтвердить, представили богатый эмпирический материал для развивающейся биологической науки. Окончательный отказ от идеи самозарождения произошел только в XIX в.

В XIX в. также была выдвинута гипотеза вечного существования жизни и ее космического происхождения на Земле. Было высказано предположение, что жизнь существует в космосе и переносится с одной планеты на другую.

В начале XX в. идею космического происхождения биологических систем на Земле и вечности существования жизни в космосе развивал русский ученый академик В.И. Вернадский.

Гипотеза академика А.И. Опарина

Принципиально новая гипотеза происхождения жизни была изложена академиком А.И. Опариным в книге «Происхождение жизни », опубликованной в 1924 г. Он выступил с утверждением, что принцип Реди , вводящий монополию биотического синтеза органических веществ, справедлив лишь для современной эпохи существования нашей планеты. В начале же своего существования, когда Земля была безжизненной, на ней происходили абиотические синтезы углеродистых соединений и их последующая предбиологическая эволюция.

Суть гипотезы Опарина заключается в следующем: зарождение жизни на Земле — длительный эволюционный процесс становления живой материи в недрах неживой. Произошло это путем химической эволюции, в результате которой простейшие органические вещества образовались из неорганических под влиянием сильнодействующих физико-химических процессов.

Появление жизни он рассматривал как единый естественный процесс, который состоял из протекавшей в условиях ранней Земли первоначальной химической эволюции, перешедшей постепенно на качественно новый уровень — биохимическую эволюцию.

Рассматривая проблему возникновения жизни путем биохимической эволюции, Опарин выделяет три этапа перехода от неживой материи к живой.

Первый этап — химическая эволюция. Когда Земля была еще безжизненной (около 4 млрд лет назад), на ней происходили абиотический синтез углеродистых соединений и их последующая предбиоло- гическая эволюция.

Для этого периода эволюции Земли были характерны многочисленные вулканические извержения с выбросом огромного количества раскаленной лавы. По мере остывания планеты водяные пары, находившиеся в атмосфере, конденсировались и обрушивались на Землю ливнями, образуя огромные водные пространства (первичный океан). Эти процессы продолжались многие миллионы лет. В водах первичного океана были растворены различные неорганические соли. Кроме того, в океан попадали и различные органические соединения, непрерывно образующиеся в атмосфере под действием ультрафиолетового излучения, высокой температуры и активной вулканической деятельности.

Концентрация органических соединений постоянно увеличивалась, и, в конце концов, воды океана стали «бульоном » из белковопо- добных веществ — пептидов.

Второй этап — появление белковых веществ. По мере смягчения условий на Земле, под воздействием на химические смеси первичного океана электрических разрядов, тепловой энергии и ультрафиолетовых лучей стало возможным образование сложных органических соединений — биополимеров и нуклеотидов, которые, постепенно объединяясь и усложняясь, превращались в протобионтов (доклеточных предков живых организмов). Итогом эволюции сложных органических веществ стало появление коацерватов , или ко- ацерватных капель.

Коацерваты — комплексы коллоидных частиц, раствор которых разделяется на два слоя: слой, богатый коллоидными частицами, и жидкость, почти свободную от них. Коацерваты обладали способностью поглощать различные вещества, растворенные в водах первичного океана. В результате внутреннее строение коацерватов менялось в сторону повышения их устойчивости в постоянно меняющихся условиях.

Теория биохимической эволюции рассматривает коацерваты как предбиологические системы, представляющие собой группы молекул, окруженные водной оболочкой.

Так, например, коацерваты способны поглощать вещества из окружающей среды, вступать во взаимодействие друг с другом, увеличиваться в размерах и т.д. Однако в отличие от живых существ ко- ацерватные капли не способны к самовоспроизводству и саморегулированию, поэтому их нельзя отнести к биологическим системам.

Третий этап — формирование способности к самовоспроизводству, появление живой клетки. В этот период начал действовать естественный отбор, т.е. в массе коацерватных капель происходил отбор ко- ацсрватов, наиболее устойчивых к данным условиям среды. Процесс отбора шел в течение многих миллионов лет. Сохранившиеся ко- ацерватные капли уже обладали способностью к первичному метаболизму — главному свойству жизни.

Вместе с тем, достигнув определенных размеров, материнская капля распадалась на дочерние, сохраняющие особенности материнской структуры.

Таким образом, можно говорить о приобретении коацерватами свойства сам о вое производства — одного из важнейших признаков жизни. По сути дела, на этой стадии коацерваты превратились в простейшие живые организмы.

Дальнейшая эволюция этих предбиологических структур была возможна только при усложнении обменных процессов внутри ко- ацервата.

Внутренняя среда коацервата нуждалась в защите от воздействий окружающей среды. Поэтому вокруг коацерватов, богатых органическими соединениями, возникли слои липидов, отделившие ко- ацерват от окружающей его водной среды. В процессе эволюции липиды трансформировались в наружную мембрану, что значительно повысило жизнеспособность и устойчивость организмов.

Появление мембраны предопределило направление дальнейшей биологической эволюции по пути все более совершенной авторегуляции, завершившейся образованием первичной клетки — археклет- ки. Клетка — элементарная биологическая единица, структурно-фун- кциональная основа всего живого. Клетки осуществляют самостоятельный обмен веществ, способны к делению и саморегулированию, т.е. обладают всеми свойствами живого. Образование новых клеток из неклеточного материала невозможно, размножение клеток происходит только благодаря делению. Органическое развитие рассматривается как универсальный процесс клеткообразования.

В структуре клетки выделяют: мембрану, отграничивающую содержимое клетки от внешней среды; цитоплазму, представляющую собой соляной раствор с растворимыми и взвешенными ферментами и молекулами РНК; ядро, содержащее хромосомы, состоящие из молекул ДНК и присоединенных к ним белков.

Следовательно, началом жизни следует считать возникновение стабильной самовоспроизводящейся органической системы (клетки) с постоянной последовательностью нуклеотидов. Только после возникновения таких систем можно говорить о начале биологической эволюции.

Возможность абиогенного синтеза биополимеров была экспериментально доказана в середине XX в. В 1953 г. американский ученый С. Миллер смоделировал первичную атмосферу Земли и синтезировал уксусную и муравьиную кислоты, мочевину и аминокислоты путем пропускания электрических зарядов через смесь инертных газов. Таким образом было продемонстрировано, как под действием абиогенных факторов возможен синтез сложных органических соединений.

Несмотря на теоретическую и экспериментальную обоснованность, концепция Опарина имеет как сильные, так и слабые стороны.

Сильной стороной концепции является достаточно точное эспериментальное обоснование химической эволюции, согласно которой зарождение жизни является закономерным результатом предбиологической эволюции материи.

Убедительным аргументом в пользу этой концепции является также возможность экспериментальной проверки ее основных положений.

Слабой стороной концепции является невозможность объяснения самого момента скачка от сложных органических соединений к живым организмам.

Одну из версий перехода от предбиологической к биологической эволюции предлагает немецкий ученый М. Эйген. Согласно его гипотезе возникновение жизни объясняется взаимодействием нуклеиновых кислот и протеинов. Нуклеиновые кислоты являются носителями генетической информации, а протеины служат катализаторами химических реакций. Нуклеиновые кислоты воспроизводят себя и передают информацию протеинам. Возникает замкнутая цепь — гиперцикл, в котором процессы химических реакций самоускоряются за счет присутствия катал и заторов.

В гиперциклах продукт реакции одновременно выступает и катализатором, и исходным реагентом. Подобные реакции называются автокаталитическими.

Другой теорией, в рамках которой можно объяснить переход от предбиологической эволюции к биологической, является синергетика. Закономерности, открытые синергетикой, позволяют прояснить механизм возникновения органической материи из неорганической в терминах самоорганизации через спонтанное возникновение новых структур в ходе взаимодействия открытой системы с окружающей средой.

Замечания к теории происхождения жизни и возникновении биосферы

В современной науке принята гипотеза абиогенного (небиологического) происхождения жизни под действием естественных причин в результате длительного процесса космической, геологической и химической эволюции — абиогенеза, основой которой явилась гипотеза академика А. И. Опарина. Абиогенезная концепция не исключает возможности существования жизни в космосе и ее космического про- исхожления на Земле.

Однако, исходя из современных достижений науки, к гипотезе А.И. Опарина напрашиваются следующие уточнения.

Жизнь не могла возникнуть на поверхности (или около нее) воды Океана, поскольку в те далекие времена Луна находилась много ближе к Земле, чем в настоящее время. Приливные волны должны были быть огромной высоты, большой разрушительной силы. Про- тобионты в этих условиях просто не могли образоваться.

Из-за отсутствия озонового слоя под воздействие жесткого ультрафиолетового излучения протобионты так же не могли существовать. Это говорит о том, что жизнь могла появиться только в толще воды.

Из-за особых условий жизнь могла появиться только в воде первичного Океана, но не на поверхности, а на дне в тонких пленках органического вещества, адсорбированного поверхностями кристаллов пирита и апатитов, видимо, около геотермальных источников. Поскольку, установлено, что органические соединения образуются в продуктах извержения вулканов, а вулканическая деятельность под Океаном в древности была весьма активной. Растворенного кислорода в древнем Океане, способного окислить органические соединения, не было.

Сегодня считается, что протобионты представляли собой молекулы РНК, но не ДНК, так как доказано, что процесс эволюции шел от РНК к белку, а затем к образованию молекулы ДНК, у которой С-Н связи были более прочными, чем С-ОН связи у РНК. Однако понятно, что молекулы РНК не могли возникнуть в результате плавного эволюционного развития. Вероятно, имел место скачек со всеми чертами самоорганизации вещества, механизм которого к настоящему времени не ясен.

Первичная биосфера в толще воды, вероятно, была представлена богатым функциональным разнообразием. И первое появление жизни должно было произойти не в виде какого-то одного вида организма, а в совокупности организмов. Сразу должны были появиться многие первичные биоценозы. Они состояли из простейших одноклеточных организмов, способных выполнять все без исключения функции живого вещества в биосфере.

Эти простейшие организмы были гетеротрофами (питались готовыми органическими соединениями), были прокариотами (организмами без ядра), были анаэробами (использовали дрожжевое брожение как источник энергии).

Из-за особых свойств углерода жизнь появилась именно на этой основе. Однако никакие современные данные не противоречат вероятности появления жизни не только на углеродной основе.

Некоторые будущие направления изучения происхождения жизни

В XXI в. с целью прояснения проблемы возникновения жизни, исследователи проявляют повышенный интерес к двум объектам - к спутнику Юпитера, открытому еще в 1610 г. Г. Галилеем. Он находится на расстоянии от Земли, равном 671 000 км. Его диаметр составляет 3100 км. Он покрыт многокилометровым слоем льда. Однако под покровом льда находится океан, и в нем, возможно, сохранились простейшие формы древней жизни.

Другой объект - Восточное озеро , которое называют реликтовым водоемом. Находится оно в Антарктиде под четырехкилометровым слоем льда. Наши исследователи обнаружили его в результате глубоководного бурения. В настоящее время разрабатывается международная программа, ставящая своей целью проникнуть в воды этого озера, не нарушая его реликтовую чистоту. Возможно, что там существуют реликтовые организмы возрастом несколько миллионов лет.

Проявляется также большой интерес к обнаруженной на территории Румынии пещере, не имеющей доступа света. Когда же пробурили вход в эту пещеру, то обнаружили существование слепых живых организмов типа жучков, которые питаются микроорганизмами. Эти микроорганизмы используют для своего существования неорганические соединения, содержащие сероводород, поступающие изнутри дна этой пещеры. В эту пещеру не проникает свет, но там есть вода.

Особый интерес вызывают микроорганизмы, открытые в последнее время американскими учеными при исследовании одного из соленых озер. Эти микроорганизмы п роя an я ют исключительную устойчивость к среде обитания. Они могут жить даже на чисто мышьяковистой среде.

Привлекают также большое внимание организмы, живущие в так называемых «черных курильщиках» (рис. 2.1).

Рис. 2.1. «Черные курильщики» дна океана (струи горячей воды показаны стрелками)

«Черные курильщики» — действующие на дне океанов многочисленные гидротермальные источники, приуроченные к осевым частям срединно-океанических хребтов. Из них в океаны под высоким давлением в 250 атм. поступает высокоминерализованная горячая вода (350 °С). Их вклад в тепловой поток Земли составляет порядка 20%.

Гидротермальные океанические источники выносят растворенные элементы из океанической коры в океаны, изменяя кору и внося весьма значительный вклад в химический состав океанов. Совместно с циклом генерации океанической коры в океанических хребтах и ее рециклирования в мантию, гидротермальное изменение представляет двухэтапную систему переноса элементов между мантией и океанами. Рециклированная в мантию океаническая кора, видимо, ответственна за часть мантийных неоднородностей.

Гидротермальные источники в срединно-океанических хребтах — среда обитания необычных биологических сообществ, получающих энергию из разложения соединений гидротермальных флюидов (черный цвет струи).

В океанической коре, видимо, находятся самые глубинные части биосферы, достигающие глубины 2500 м.

Гидротермачьные источники вносят значительный вклад в тепловой баланс Земли. Под срединными хребтами мантия подходит наиболее близко к поверхности. Морская вода по трещинам проникает в океаническую кору на значительную глубину, вследствие теплопроводности нагревается мантийным теплом и концентрируется в магматических камерах.

Глубокое изучение перечисленных выше «особых» объектов, несомненно, приведет ученых к более объективному пониманию проблемы происхождения жизни на нашей планете и образованию ее биосферы.

Однако следует указать, что к настоящему времени экспериментально получить жизнь не удается.

Наибольшей популярностью у современных учёных пользуется гипотеза Опарина-Холдейна о происхождении жизни на Земле. Согласно гипотезе жизнь произошла из неживой материи (абиогенно) в результате сложных биохимических реакций.

Положения

Чтобы рассказать кратко о гипотезе возникновения жизни, следует выделить три этапа становления жизни по Опарину:

  • возникновение органических соединений;
  • образование полимерных соединений (белков, липидов, полисахаридов);
  • появление примитивных организмов, способных к воспроизводству.

Рис. 1. Схема эволюции по Опарину.

Биогенной, т.е. биологической эволюции, предшествовала химическая эволюция, в результате которой образовывались сложные вещества. На их образование влияла бескислородная атмосфера Земли, ультрафиолет, разряды молний.

Из органических веществ возникали биополимеры, которые складывались в примитивные формы жизни (пробионты), постепенно отделяясь мембраной от внешней среды. Появление в пробионтах нуклеиновых кислот способствовало передаче наследственной информации и усложнению организации. В результате длительного естественного отбора остались только те организмы, которые были способны к успешному воспроизводству.

Рис. 2. Пробионты.

Пробионты или проклетки до сих пор не были получены экспериментальным путём. Поэтому до конца непонятно, как примитивное скопление биополимеров смогло перейти от неживого пребывания в бульоне к воспроизводству, питанию и дыханию.

История

Гипотеза Опарина-Холдейна прошла долгий путь и не раз критиковалась. История становления гипотезы описана в таблице.

ТОП-2 статьи которые читают вместе с этой

Год

Учёный

Основные события

Советский биолог Александр Иванович Опарин

Основные положения гипотезы Опарина впервые были сформулированы в его книге «Происхождение жизни». Опарин предположил, что биополимеры (высокомолекулярные соединения), растворённые в воде, под действием внешних факторов могут образовывать коацерватные капли или коацерваты. Это собранные вместе органические вещества, которые условно отделяются от внешней среды и начинают поддерживать с ней обмен веществ. Процесс коацервации - расслоения раствора с образованием коацерватов - является предшествующей стадией коагуляции, т.е. слипания мелких частиц. Именно в результате этих процессов из «первичного бульона» (термин Опарина) появились аминокислоты - основа живых организмов

Британский биолог Джон Холдейн

Независимо от Опарина стал развивать подобные взгляды на проблему происхождения жизни. В отличие от Опарина Холдейн предполагал, что вместо коацерватов образовывались макромолекулярные вещества, способные к воспроизводству. Холдейн считал, что первыми такими веществами были не белки, а нуклеиновые кислоты

Американский химик Стэнли Миллер

Будучи студентом, воссоздал искусственную среду для получения аминокислот из неживой материи (химических веществ). Эксперимент Миллера-Юри сымитировал во взаимосвязанных колбах условия Земли. Колбы заполняла смесь газов (аммиак, водород, монооксид углерода), схожая по составу с ранней атмосферой Земли. В одной части системы находилась постоянно кипящая вода, пары которой подвергались электрическим разрядам (имитация молний). Охлаждаясь, пар скапливался в виде конденсата в нижней трубке. После недели непрерывного эксперимента в колбе были обнаружены аминокислоты, сахара, липиды

Британский биолог Ричард Докинз

В своей книге «Эгоистичный ген» предположил, что в первичном бульоне образовывались не коацерватные капли, а молекулы, способные к воспроизводству. Достаточно было возникнуть одной молекуле, чтобы её копии заполнили океан

Рис. 3. Эксперимент Миллера.

Эксперимент Миллера неоднократно подвергался критике, и до конца не признаётся практическим подтверждением теории Опарина-Холдейна. Главная проблема - получение из образованной смеси органических веществ, составляющих основу жизни.

Что мы узнали?

Из урока узнали о сути гипотезы происхождения жизни на Земле Опарина-Холдейна. Согласно теории высокомолекулярные вещества (белки, жиры, углеводы) возникли из неживой материи в результате сложных биохимических реакций под воздействием внешней среды. Гипотезу впервые проверил Стэнли Миллер, воссоздав условия Земли до зарождения жизни. В результате были получены аминокислоты и другие сложные вещества. Однако как данные вещества воспроизводились, осталось без подтверждения.

Тест по теме

Оценка доклада

Средняя оценка: 4.4 . Всего получено оценок: 108.

На большинство вопросов, касающихся развития жизни на Земле, отвечает эволюционное учение Дарвина - ученого, произведшего переворот в научном мире еще два века назад. Однако Дарвин не давал точного ответа на вопрос, как появился первый живой организм. По его мнению, самозарождение бактерии произошло случайно, исходя из ряда благоприятных условий и наличия необходимого материала для клетки. Но вот незадача: простейшая бактерия состоит из двух тысяч ферментов. Исходя из таких факторов, ученые подсчитали: вероятность появления простейшего живого организма за миллиард лет равна 10¯ 39950 %. Чтобы понимать, насколько это несущественно, можно привести простой пример с разбитым телевизором. Если две тысячи деталей от телевизора положить в коробку и хорошенько ее потрясти, то возможность того, что в коробке рано или поздно окажется собранный телевизор, примерно равна вероятности зарождения жизни. И в таком примере даже не учитываются неблагоприятные факторы окружающей среды. Если детали все-таки выстроились в правильном порядке, это еще не значит, что собранный телевизор, например, не расплавится из-за слишком высокой температуры, которая его ожидает за пределами коробки.

Эволюционизм и креационизм

Тем не менее жизнь на Земле появилась, а загадка ее происхождения не дает покоя лучшим умам человечества. В начале XX века вывод о происхождении жизни на Земле определялся наличием или отсутствием веры в Бога. Большинство атеистов придерживались теории случайного зарождения первой клетки и ее эволюционного пути развития, а верующие сводили тайну жизни к замыслу и творению Божьему. Для креационистов (так называют сторонников разумного замысла) не оставалось непонятных вопросов или загадок: все, начиная от первой клетки, заканчивая глубинами космоса, создал Всевышний Творец.

Первичный бульон

В 1924 году ученый Александр Опарин опубликовал книгу, в которой принес научному миру новую гипотезу возникновения первого простейшего организма. В 1929 году теория Опарина о происхождении жизни заинтересовала ученого Джона Холдейна. Британский исследователь занимался аналогичным изучением и пришел к выводам, подтверждавшим доктрину советского ученого. Общая трактовка теорий Опарина и Холдейна сводилась к следующему принципу:

  • Молодая Земля имела атмосферу из аммиака и метана, лишенную кислорода.
  • Грозы, воздействующие на атмосферу, привели к формированию органических веществ.
  • Органические вещества в огромном количестве и разнообразии накапливались в больших водоемах, что получило название "первичного бульона".
  • В определенных местах сконцентрировалось большое количество молекул, достаточных для зарождения жизни.
  • Взаимодействие между ними привело к образованию белков и нуклеиновых кислот.
  • Белки и нуклеиновые кислоты образуют генетический код.
  • Соединения молекул и генетического кода образовали живую клетку.
  • Клетка получала питательную среду из первичного бульона.
  • Когда из питательной среды пропали необходимые вещества, клетка научились пополнять их самостоятельно.
  • У клетки появился собственный обмен веществ.
  • Развились новые живые организмы.

Теория Опарина-Холдейна ответила на главный вопрос сторонников теории Дарвина о том, как мог появиться первый живой организм.

Опыт Миллера

Научное сообщество заинтересовалось экспериментальной проверкой гипотезы первичного бульона. Для подтверждения теории Опарина химик Миллер придумал уникальное устройство. В нем он смоделировал не только первобытную атмосферу Земли (аммиак с метаном), но и предполагаемый состав первичного бульона, из которого состояли моря и океаны. К устройству подавались пар и имитация молнии - исковой разряд. В ходе эксперимента Миллеру удалось получить аминокислоты, которые являются строительной основой всех белков. Благодаря этому теория Опарина приобрела еще большую популярность и значимость в мире науки.

Неоправданность теории

Опыт, проведенный Миллером, в течение тридцати лет представлял собой научную ценность. Однако в 80-е годы ученые выяснили, что первичная атмосфера Земли состояла не из аммиака и метана, как говорилось в теории Опарина, а из азота и двуокиси углерода. Более того, химик пренебрег тем, что вместе с аминокислотами образовались вещества, нарушающие функции живого организма.

Это стало плохой новостью для химиков по всему миру, придерживающихся, как им тогда казалось, самой фундаментальной теории. Как же тогда зародилась жизнь, если взаимодействие азота и двуокиси углерода образует недостаточное количество органических соединений? Ответа у Миллера не было, а теория Опарина потерпела крах.

Жизнь - это загадка вселенной

Сторонники эволюции снова остались без предположений о том, как могла появиться первая бактерия. Каждый последующий эксперимент подтверждал, что живая клетка имеет настолько сложное строение, что ее случайное появление возможно только в фантастической литературе.

Несмотря на научное опровержение, теория Опарина часто встречается в современных книгах по биологии и химии, потому как такой опыт имел историческую ценность в научной среде.

Вопрос 1. Перечислите основные положения гипотезы А. И. Опарина.

В современных условиях возникнове-ние живых существ из неживой природы невозможно. Абиогенное (т. е. без участия живых организмов) возникновение живой материи возможно было только в услови-ях древней атмосферы и отсутствия жи-вых организмов. В состав древней атмо-сферы входили метан, аммиак, углекис-лый газ, водород, пары воды и другие неорганические соединения. Под действи-ем мощных электрических разрядов, ультрафиолетового излучения и высокой радиации из этих веществ могли возни-кать органические соединения, которые накапливались в океане, образуя «пер-вичный бульон».

В «первичном бульоне» из биополи-меров образовывались многомолекуляр-ные комплексы — коацерваты. В коацерватные капли из внешней среды попадали ионы металлов, выступавшие в качестве первых катализаторов. Из огромного количества химических соединений, при-сутствовавших в «первичном бульоне», отбирались наиболее эффективные в ката-литическом отношении комбинации мо-лекул, что в конечном счете привело к появлению ферментов. На границе между коацерватами и внешней средой выстра-ивались молекулы липидов, что приводи-ло к образованию примитивной клеточ-ной мембраны.

На определенном этапе белковые пробионты включили в себя нуклеиновые кислоты, создав единые комплексы, что привело к возникновению таких свойств живого, как самовоспроизведение, сохра-нение наследственной информации и ее передача последующим поколениям.

Пробионты, у которых обмен веществ сочетался со способностью к самовос-произведению, можно уже рассматривать как примитивные проклетки, дальнейшее развитие которых происходило по зако-нам эволюции живой материи.

Вопрос 2. Какие экспериментальные доказа-тельства можно привести в пользу данной гипо-тезы?

В 1953 г. эта гипотеза А. И. Опарина была экспериментально подтверждена опытами американского ученого С. Мил-лера. В созданной им установке были смоделированы условия, предположительно существовавшие в первичной атмосфере Земли. В результате опытов были получе-ны аминокислоты. Сходные опыты много-кратно повторялись в различных лабора-ториях и позволили доказать принципи-альную возможность синтеза в таких условиях практически всех мономеров основных биополимеров. В дальнейшем было установлено, что при определенных условиях из мономеров возможен синтез более сложных органических биополиме-ров: полипептидов, полинуклеотидов, по-лисахаридов и липидов.

Вопрос 3. В чем отличия гипотезы А. И. Опа-рина от гипотезы Дж. Холдейна? Материал с сайта

Дж. Холдейн также выдвинул гипотезу абиогенного зарождения жизни, но, в от-личие от А. И. Опарина, он отдавал пер-венство не белкам — коацерватным систе-мам, способным к обмену веществ, а нук-леиновым кислотам, т. е. макромолекулярным системам, способным к самовоспроизводству.

Вопрос 4. Какие доводы приводят оппоненты, критикуя гипотезу А. И. Опарина?

К сожалению, в рамках гипотезы А. И. Опарина (да и Дж. Холдейна тоже) не удается объяснить главную проблему: как произошел качественный скачок от неживого к живому.

Не нашли то, что искали? Воспользуйтесь поиском

На этой странице материал по темам:

  • гипотеза сочинение
  • отличия гипотезы опарина и холдейна
  • опыты холдейна и опарина
  • краткое изложение гипотезы Опарина
  • гипотеза опарина кратко