График с дробью и модулем. Преобразования графиков с модулем. Уравнения с двумя модулями

Модуль — одна из тех вещей, о которых вроде-бы все слышали, но в действительности никто нормально не понимает. Поэтому сегодня будет большой урок, посвящённый решению уравнений с модулями.

Сразу скажу: урок будет несложный. И вообще модули — вообще тема относительно несложная. «Да конечно, несложная! У меня от неё мозг разрывается!» — скажут многие ученики, но все эти разрывы мозга происходят из-за того, что у большинства людей в голове не знания, а какая-то хрень. И цель этого урока — превратить хрень в знания.:)

Немного теории

Итак, поехали. Начнём с самого важного: что такое модуль? Напомню, что модуль числа — это просто то же самое число, но взятое без знака «минус». Т.е., например, $\left| -5 \right|=5$. Или $\left| -129,5 \right|=129,5$.

Вот так всё просто? Да, просто. А чему тогда равен модуль положительного числа? Тут ещё проще: модуль положительного числа равен самому этому числу: $\left| 5 \right|=5$; $\left| 129,5 \right|=129,5$ и т.д.

Получается любопытная вещь: разные числа могут иметь один тот же модуль. Например: $\left| -5 \right|=\left| 5 \right|=5$; $\left| -129,5 \right|=\left| 129,5 \right|=129,5$. Нетрудно заметить, что это за числа, у которых модули одинаковые: эти числа противоположны. Таким образом, отметим для себя, что модули противоположных чисел равны:

\[\left| -a \right|=\left| a \right|\]

Ещё один важный факт: модуль никогда не бывает отрицательным . Какое бы число мы ни взяли — хоть положительное, хоть отрицательное — его модуль всегда оказывается положительным (или в крайнем случае нулём). Именно поэтому модуль часто называют абсолютной величиной числа.

Кроме того, если объединить определение модуля для положительного и отрицательного числа, то получим глобальное определение модуля для всех чисел. А именно: модуль числа равен самому этому числу, если число положительное (или ноль), либо равен противоположному числу, если число отрицательное. Можно записать это в виде формулы:

Ещё есть модуль нуля, но он всегда равен нулю. Кроме того, ноль — единственное число, которое не имеет противоположного.

Таким образом, если рассмотреть функцию $y=\left| x \right|$ и попробовать нарисовать её график, то получится вот такая «галка»:

График модуля и пример решения уравнения

Из этой картинки сразу видно, что $\left| -m \right|=\left| m \right|$, а график модуля никогда не опускается ниже оси абсцисс. Но это ещё не всё: красной линией отмечена прямая $y=a$, которая при положительных $a$ даёт нам сразу два корня: ${{x}_{1}}$ и ${{x}_{2}}$, но об этом мы поговорим позже.:)

Помимо чисто алгебраического определения, есть геометрическое. Допустим, есть две точки на числовой прямой: ${{x}_{1}}$ и ${{x}_{2}}$. В этом случае выражение $\left| {{x}_{1}}-{{x}_{2}} \right|$ — это просто расстояние между указанными точками. Или, если угодно, длина отрезка, соединяющего эти точки:

Модуль — это расстояние между точками на числовой прямой

Из этого определения также следует, что модуль всегда неотрицателен. Но хватит определений и теории — перейдём к настоящим уравнениям.:)

Основная формула

Ну хорошо, с определением разобрались. Но легче-то от этого не стало. Как решать уравнения, содержащие этот самый модуль?

Спокойствие, только спокойствие. Начнём с самых простых вещей. Рассмотрим что-нибудь типа такого:

\[\left| x \right|=3\]

Итак, модуль$x$ равен 3. Чему может быть равен $x$? Ну, судя по определению, нас вполне устроит $x=3$. Действительно:

\[\left| 3 \right|=3\]

А есть ли другие числа? Кэп как бы намекает, что есть. Например, $x=-3$ — для него тоже $\left| -3 \right|=3$, т.е. требуемое равенство выполняется.

Так может, если поискать, подумать, мы найдём ещё числа? А вот обломитесь: больше чисел нет. Уравнение $\left| x \right|=3$ имеет лишь два корня: $x=3$ и $x=-3$.

Теперь немного усложним задачу. Пусть вместо переменной $x$ под знаком модуля тусуется функция $f\left(x \right)$, а справа вместо тройки поставим произвольное число $a$. Получим уравнение:

\[\left| f\left(x \right) \right|=a\]

Ну и как такое решать? Напомню: $f\left(x \right)$ — произвольная функция, $a$ — любое число. Т.е. вообще любое! Например:

\[\left| 2x+1 \right|=5\]

\[\left| 10x-5 \right|=-65\]

Обратим внимание на второе уравнение. Про него сразу можно сказать: корней у него нет. Почему? Всё правильно: потому что в нём требуется, чтобы модуль был равен отрицательному числу, чего никогда не бывает, поскольку мы уже знаем, что модуль — число всегда положительное или в крайнем случае ноль.

А вот с первым уравнением всё веселее. Тут два варианта: либо под знаком модуля стоит положительное выражение, и тогда$\left| 2x+1 \right|=2x+1$, либо это выражение всё-таки отрицательное, и тогда $\left| 2x+1 \right|=-\left(2x+1 \right)=-2x-1$. В первом случае наше уравнение перепишется так:

\[\left| 2x+1 \right|=5\Rightarrow 2x+1=5\]

И внезапно получается, что подмодульное выражение $2x+1$ действительно положительно — оно равно числу 5. Т.е. мы можем спокойно решать это уравнение — полученный корень будет кусочком ответа:

Особо недоверчивые могут попробовать подставить найденный корень в исходное уравнение и убедиться, что действительно под модулем будет положительное число.

Теперь разберём случай отрицательного подмодульного выражения:

\[\left\{ \begin{align}& \left| 2x+1 \right|=5 \\& 2x+1 \lt 0 \\\end{align} \right.\Rightarrow -2x-1=5\Rightarrow 2x+1=-5\]

Опа! Снова всё чётко: мы предположили, что $2x+1 \lt 0$, и в результате получили, что $2x+1=-5$ — действительно, это выражение меньше нуля. Решаем полученное уравнение, при этом уже точно зная, что найденный корень нас устроит:

Итого мы вновь получили два ответа: $x=2$ и $x=3$. Да, объём вычислений оказался малость побольше, чем в совсем уж простом уравнении $\left| x \right|=3$, но принципиально ничего не изменилось. Так может, существует какой-то универсальный алгоритм?

Да, такой алгоритм существует. И сейчас мы его разберём.

Избавление от знака модуля

Пусть нам дано уравнение $\left| f\left(x \right) \right|=a$, причём $a\ge 0$ (иначе, как мы уже знаем, корней нет). Тогда можно избавиться от знака модуля по следующему правилу:

\[\left| f\left(x \right) \right|=a\Rightarrow f\left(x \right)=\pm a\]

Таким образом, наше уравнение с модулем распадается на два, но уже без модуля. Вот и вся технология! Попробуем решить парочку уравнений. Начнём вот с такого

\[\left| 5x+4 \right|=10\Rightarrow 5x+4=\pm 10\]

Отдельно рассмотрим, когда справа стоит десятка с плюсом, и отдельно — когда с минусом. Имеем:

\[\begin{align}& 5x+4=10\Rightarrow 5x=6\Rightarrow x=\frac{6}{5}=1,2; \\& 5x+4=-10\Rightarrow 5x=-14\Rightarrow x=-\frac{14}{5}=-2,8. \\\end{align}\]

Вот и всё! Получили два корня: $x=1,2$ и $x=-2,8$. Всё решение заняло буквально две строчки.

Ок, не вопрос, давайте рассмотрим что-нибудь чуть посерьёзнее:

\[\left| 7-5x \right|=13\]

Опять раскрываем модуль с плюсом и минусом:

\[\begin{align}& 7-5x=13\Rightarrow -5x=6\Rightarrow x=-\frac{6}{5}=-1,2; \\& 7-5x=-13\Rightarrow -5x=-20\Rightarrow x=4. \\\end{align}\]

Опять пара строчек — и ответ готов! Как я и говорил, в модулях нет ничего сложного. Нужно лишь запомнить несколько правил. Поэтому идём дальше и приступаем с действительно более сложным задачам.

Случай переменной правой части

А теперь рассмотрим вот такое уравнение:

\[\left| 3x-2 \right|=2x\]

Это уравнение принципиально отличается от всех предыдущих. Чем? А тем, что справа от знака равенства стоит выражение $2x$ — и мы не можем заранее знать, положительное оно или отрицательное.

Как быть в таком случае? Во-первых, надо раз и навсегда понять, что если правая часть уравнения окажется отрицательной, то уравнение не будет иметь корней — мы уже знаем, что модуль не может быть равен отрицательному числу.

А во-вторых, если права часть всё-таки положительна (или равна нулю), то можно действовать точно так же, как раньше: просто раскрыть модуль отдельно со знаком «плюс» и отдельно — со знаком «минус».

Таким образом, сформулируем правило для произвольных функций $f\left(x \right)$ и $g\left(x \right)$ :

\[\left| f\left(x \right) \right|=g\left(x \right)\Rightarrow \left\{ \begin{align}& f\left(x \right)=\pm g\left(x \right), \\& g\left(x \right)\ge 0. \\\end{align} \right.\]

Применительно к нашему уравнению получим:

\[\left| 3x-2 \right|=2x\Rightarrow \left\{ \begin{align}& 3x-2=\pm 2x, \\& 2x\ge 0. \\\end{align} \right.\]

Ну, с требованием $2x\ge 0$ мы как-нибудь справимся. В конце концов, можно тупо подставить корни, которые мы получим из первого уравнения, и проверить: выполняется неравенство или нет.

Поэтому решим-ка само уравнение:

\[\begin{align}& 3x-2=2\Rightarrow 3x=4\Rightarrow x=\frac{4}{3}; \\& 3x-2=-2\Rightarrow 3x=0\Rightarrow x=0. \\\end{align}\]

Ну и какой их этих двух корней удовлетворяет требованию $2x\ge 0$? Да оба! Поэтому в ответ пойдут два числа: $x={4}/{3}\;$ и $x=0$. Вот и всё решение.:)

Подозреваю, что кто-то из учеников уже начал скучать? Что ж, рассмотрим ещё более сложное уравнение:

\[\left| {{x}^{3}}-3{{x}^{2}}+x \right|=x-{{x}^{3}}\]

Хоть оно и выглядит злобно, по факту это всё то же самое уравнение вида «модуль равен функции»:

\[\left| f\left(x \right) \right|=g\left(x \right)\]

И решается оно точно так же:

\[\left| {{x}^{3}}-3{{x}^{2}}+x \right|=x-{{x}^{3}}\Rightarrow \left\{ \begin{align}& {{x}^{3}}-3{{x}^{2}}+x=\pm \left(x-{{x}^{3}} \right), \\& x-{{x}^{3}}\ge 0. \\\end{align} \right.\]

С неравенством мы потом разберёмся — оно какое-то уж слишком злобное (на самом деле простое, но мы его решать не будем). Пока лучше займёмся полученными уравнениями. Рассмотрим первый случай — это когда модуль раскрывается со знаком «плюс»:

\[{{x}^{3}}-3{{x}^{2}}+x=x-{{x}^{3}}\]

Ну, тут и ежу понятно, что нужно всё собрать слева, привести подобные и посмотреть, что получится. А получится вот что:

\[\begin{align}& {{x}^{3}}-3{{x}^{2}}+x=x-{{x}^{3}}; \\& 2{{x}^{3}}-3{{x}^{2}}=0; \\\end{align}\]

Выносим общий множитель ${{x}^{2}}$ за скобку и получаем очень простое уравнение:

\[{{x}^{2}}\left(2x-3 \right)=0\Rightarrow \left[ \begin{align}& {{x}^{2}}=0 \\& 2x-3=0 \\\end{align} \right.\]

\[{{x}_{1}}=0;\quad {{x}_{2}}=\frac{3}{2}=1,5.\]

Тут мы воспользовались важным свойством произведения, ради которого мы и раскладывали исходный многочлен на множители: произведение равно нулю, когда хотя бы один из множителей равен нулю.

Теперь точно так же разберёмся со вторым уравнением, которое получается при раскрытии модуля со знаком «минус»:

\[\begin{align}& {{x}^{3}}-3{{x}^{2}}+x=-\left(x-{{x}^{3}} \right); \\& {{x}^{3}}-3{{x}^{2}}+x=-x+{{x}^{3}}; \\& -3{{x}^{2}}+2x=0; \\& x\left(-3x+2 \right)=0. \\\end{align}\]

Опять то же самое: произведение равно нулю, когда равен нулю хотя бы один из множителей. Имеем:

\[\left[ \begin{align}& x=0 \\& -3x+2=0 \\\end{align} \right.\]

Ну вот мы получили три корня: $x=0$, $x=1,5$ и $x={2}/{3}\;$. Ну и что из этого набора пойдёт в окончательный ответ? Для этого вспомним, что у нас есть дополнительное ограничение в виде неравенства:

Как учесть это требование? Да просто подставим найденные корни и проверим: выполняется неравенство при этих $x$ или нет. Имеем:

\[\begin{align}& x=0\Rightarrow x-{{x}^{3}}=0-0=0\ge 0; \\& x=1,5\Rightarrow x-{{x}^{3}}=1,5-{{1,5}^{3}} \lt 0; \\& x=\frac{2}{3}\Rightarrow x-{{x}^{3}}=\frac{2}{3}-\frac{8}{27}=\frac{10}{27}\ge 0; \\\end{align}\]

Таким образом, корень $x=1,5$ нас не устраивает. И в ответ пойдут лишь два корня:

\[{{x}_{1}}=0;\quad {{x}_{2}}=\frac{2}{3}.\]

Как видите, даже в этом случае ничего сложного не было — уравнения с модулями всегда решаются по алгоритму. Нужно лишь хорошо разбираться в многочленах и неравенствах. Поэтому переходим к более сложным задачам — там уже будет не один, а два модуля.

Уравнения с двумя модулями

До сих пор мы изучали лишь самые простые уравнения — там был один модуль и что-то ещё. Это «что-то ещё» мы отправляли в другую часть неравенства, подальше от модуля, чтобы в итоге всё свелось к уравнению вида $\left| f\left(x \right) \right|=g\left(x \right)$ или даже более простому $\left| f\left(x \right) \right|=a$.

Но детский сад закончился — пора рассмотреть что-нибудь посерьёзнее. Начнём с уравнений вот такого типа:

\[\left| f\left(x \right) \right|=\left| g\left(x \right) \right|\]

Это уравнение вида «модуль равен модулю». Принципиально важным моментом является отсутствие других слагаемых и множителей: только один модуль слева, ещё один модуль справа — и ничего более.

Кто-нибудь сейчас подумает, что такие уравнения решаются сложнее, чем то, что мы изучали до сих пор. А вот и нет: эти уравнения решаются даже проще. Вот формула:

\[\left| f\left(x \right) \right|=\left| g\left(x \right) \right|\Rightarrow f\left(x \right)=\pm g\left(x \right)\]

Всё! Мы просто приравниваем подмодульные выражения, ставя перед одним из них знак «плюс-минус». А затем решаем полученные два уравнения — и корни готовы! Никаких дополнительных ограничений, никаких неравенств и т.д. Всё очень просто.

Давайте попробуем решать вот такую задачу:

\[\left| 2x+3 \right|=\left| 2x-7 \right|\]

Элементарно, Ватсон! Раскрываем модули:

\[\left| 2x+3 \right|=\left| 2x-7 \right|\Rightarrow 2x+3=\pm \left(2x-7 \right)\]

Рассмотрим отдельно каждый случай:

\[\begin{align}& 2x+3=2x-7\Rightarrow 3=-7\Rightarrow \emptyset ; \\& 2x+3=-\left(2x-7 \right)\Rightarrow 2x+3=-2x+7. \\\end{align}\]

В первом уравнении корней нет. Потому что когда это $3=-7$? При каких значениях $x$? «Какой ещё нафиг $x$? Ты обкурился? Там вообще нет $x$» — скажете вы. И будете правы. Мы получили равенство, не зависящее от переменной $x$, и при этом само равенство — неверное. Потому и нет корней.:)

Со вторым уравнением всё чуть интереснее, но тоже очень и очень просто:

Как видим, всё решилось буквально в пару строчек — другого от линейного уравнения мы и не ожидали.:)

В итоге окончательный ответ: $x=1$.

Ну как? Сложно? Конечно, нет. Попробуем что-нибудь ещё:

\[\left| x-1 \right|=\left| {{x}^{2}}-3x+2 \right|\]

Опять у нас уравнение вида $\left| f\left(x \right) \right|=\left| g\left(x \right) \right|$. Поэтому сразу переписываем его, раскрывая знак модуля:

\[{{x}^{2}}-3x+2=\pm \left(x-1 \right)\]

Возможно, кто-то сейчас спросит: «Эй, что за бред? Почему «плюс-минус» стоит у правого выражения, а не у левого?» Спокойно, сейчас всё объясню. Действительно, по-хорошему мы должны были переписать наше уравнение следующим образом:

Затем нужно раскрыть скобки, перенести все слагаемые в одну сторону от знака равенства (поскольку уравнение, очевидно, в обоих случаях будет квадратным), ну и дальше отыскать корни. Но согласитесь: когда «плюс-минус» стоит перед тремя слагаемыми (особенно когда одно из этих слагаемых — квадратное выражение), это как-то более сложно выглядит, нежели ситуация, когда «плюс-минус» стоит лишь перед двумя слагаемыми.

Но ведь ничто не мешает нам переписать исходное уравнение следующим образом:

\[\left| x-1 \right|=\left| {{x}^{2}}-3x+2 \right|\Rightarrow \left| {{x}^{2}}-3x+2 \right|=\left| x-1 \right|\]

Что произошло? Да ничего особенного: просто поменяли левую и правую часть местами. Мелочь, которая в итоге немного упростит нам жизнь.:)

В общем, решаем это уравнение, рассматривая варианты с плюсом и с минусом:

\[\begin{align}& {{x}^{2}}-3x+2=x-1\Rightarrow {{x}^{2}}-4x+3=0; \\& {{x}^{2}}-3x+2=-\left(x-1 \right)\Rightarrow {{x}^{2}}-2x+1=0. \\\end{align}\]

Первое уравнение имеет корни $x=3$ и $x=1$. Второе вообще является точным квадратом:

\[{{x}^{2}}-2x+1={{\left(x-1 \right)}^{2}}\]

Поэтому у него единственный корень: $x=1$. Но этот корень мы уже получали ранее. Таким образом, в итоговый ответ пойдут лишь два числа:

\[{{x}_{1}}=3;\quad {{x}_{2}}=1.\]

Миссия выполнена! Можно взять с полки и скушать пирожок. Там их 2, ваш средний.:)

Важное замечание . Наличие одинаковых корней при разных вариантах раскрытия модуля означает, что исходные многочлены раскладываются на множители, и среди этих множителей обязательно будет общий. Действительно:

\[\begin{align}& \left| x-1 \right|=\left| {{x}^{2}}-3x+2 \right|; \\& \left| x-1 \right|=\left| \left(x-1 \right)\left(x-2 \right) \right|. \\\end{align}\]

Одно из свойств модуля: $\left| a\cdot b \right|=\left| a \right|\cdot \left| b \right|$ (т.е. модуль произведения равен произведению модулей), поэтому исходное уравнение можно переписать так:

\[\left| x-1 \right|=\left| x-1 \right|\cdot \left| x-2 \right|\]

Как видим, у нас действительно возник общий множитель. Теперь, если собрать все модули с одной стороны, то можно вынести этот множитель за скобку:

\[\begin{align}& \left| x-1 \right|=\left| x-1 \right|\cdot \left| x-2 \right|; \\& \left| x-1 \right|-\left| x-1 \right|\cdot \left| x-2 \right|=0; \\& \left| x-1 \right|\cdot \left(1-\left| x-2 \right| \right)=0. \\\end{align}\]

Ну а теперь вспоминаем, что произведение равно нулю, когда хотя бы один из множителей равен нулю:

\[\left[ \begin{align}& \left| x-1 \right|=0, \\& \left| x-2 \right|=1. \\\end{align} \right.\]

Таким образом, исходное уравнение с двумя модулями свелось к двум простейшим уравнениям, о которых мы говорили в самом начале урока. Такие уравнения решаются буквально в пару строчек.:)

Данное замечание, возможно, покажется излишне сложным и неприменимым на практике. Однако в реальности вам могут встретиться куда более сложные задачи, нежели те, что мы сегодня разбираем. В них модули могут комбинироваться с многочленами, арифметическими корнями, логарифмами и т.д. И в таких ситуациях возможность понизить общую степень уравнения путём вынесения чего-либо за скобку может оказаться очень и очень кстати.:)

Теперь хотелось бы разобрать ещё одно уравнение, которое на первый взгляд может показаться бредовым. На нём «залипают» многие ученики — даже те, которые считают, что хорошо разобрались в модулях.

Тем не менее, это уравнение решается даже проще, чем то, что мы рассматривали ранее. И если вы поймёте почему, то получите ещё один приём для быстрого решения уравнений с модулями.

Итак, уравнение:

\[\left| x-{{x}^{3}} \right|+\left| {{x}^{2}}+x-2 \right|=0\]

Нет, это не опечатка: между модулями именно плюс. И нам нужно найти, при каких $x$ сумма двух модулей равна нулю.:)

В чём вообще проблема? А проблема в том, что каждый модуль — число положительное, либо в крайнем случае ноль. А что будет, если сложить два положительных числа? Очевидно, снова положительное число:

\[\begin{align}& 5+7=12 \gt 0; \\& 0,004+0,0001=0,0041 \gt 0; \\& 5+0=5 \gt 0. \\\end{align}\]

Последняя строчка может натолкнуть на мысль: единственный случай, когда сумма модулей равна нулю — это если каждый модуль будет равен нулю:

\[\left| x-{{x}^{3}} \right|+\left| {{x}^{2}}+x-2 \right|=0\Rightarrow \left\{ \begin{align}& \left| x-{{x}^{3}} \right|=0, \\& \left| {{x}^{2}}+x-2 \right|=0. \\\end{align} \right.\]

А когда модуль равен нулю? Только в одном случае — когда подмодульное выражение равно нулю:

\[{{x}^{2}}+x-2=0\Rightarrow \left(x+2 \right)\left(x-1 \right)=0\Rightarrow \left[ \begin{align}& x=-2 \\& x=1 \\\end{align} \right.\]

Таким образом, у нас есть три точки, в которых обнуляется первый модуль: 0, 1 и −1; а также две точки, в которых обнуляется второй модуль: −2 и 1. Однако нам нужно, чтобы оба модуля обнулялись одновременно, поэтому среди найденных чисел нужно выбрать те, которые входят в оба набора. Очевидно, такое число лишь одно: $x=1$ — это и будет окончательным ответом.

Метод расщепления

Что ж, мы уже рассмотрели кучу задач и изучили множество приёмов. Думаете, на этом всё? А вот и нет! Сейчас мы рассмотрим заключительный приём — и одновременно самый важный. Речь пойдёт о расщеплении уравнений с модулем. О чём вообще пойдёт речь? Давайте вернёмся немного назад и рассмотрим какое-нибудь простое уравнение. Например, это:

\[\left| 3x-5 \right|=5-3x\]

В принципе, мы уже знаем, как решать такое уравнение, потому что это стандартная конструкция вида $\left| f\left(x \right) \right|=g\left(x \right)$. Но попробуем взглянуть на это уравнение немного под другим углом. Точнее, рассмотрим выражение, стоящее под знаком модуля. Напомню, что модуль любого числа может быть равен самому числу, а может быть противоположен этому числу:

\[\left| a \right|=\left\{ \begin{align}& a,\quad a\ge 0, \\& -a,\quad a \lt 0. \\\end{align} \right.\]

Собственно, в этой неоднозначности и состоит вся проблема: поскольку число под модулем меняется (оно зависит от переменной), нам неясно — положительное оно или отрицательное.

Но что если изначально потребовать, чтобы это число было положительным? Например, потребуем, чтобы $3x-5 \gt 0$ — в этом случае мы гарантированно получим положительное число под знаком модуля, и от этого самого модуля можно полностью избавиться:

Таким образом, наше уравнение превратится в линейное, которое легко решается:

Правда, все эти размышления имеют смысл только при условии $3x-5 \gt 0$ — мы сами ввели это требование, дабы однозначно раскрыть модуль. Поэтому давайте подставим найденный $x=\frac{5}{3}$ в это условие и проверим:

Получается, что при указанном значении $x$ наше требование не выполняется, т.к. выражение оказалось равно нулю, а нам нужно, чтобы оно было строго больше нуля. Печалька.:(

Но ничего страшного! Ведь есть ещё вариант $3x-5 \lt 0$. Более того: есть ещё и случай $3x-5=0$ — это тоже нужно рассмотреть, иначе решение будет неполным. Итак, рассмотрим случай $3x-5 \lt 0$:

Очевидно, что в модуль раскроется со знаком «минус». Но тогда возникает странная ситуация: и слева, и справа в исходном уравнении будет торчать одно и то же выражение:

Интересно, при каких таких $x$ выражение $5-3x$ будет равно выражению $5-3x$? От таких уравнений даже Капитан очевидность подавился бы слюной, но мы-то знаем: это уравнение является тождеством, т.е. оно верно при любых значениях переменной!

А это значит, что нас устроят любые $x$. Вместе с тем у нас есть ограничение:

Другими словами, ответом будет не какое-то отдельное число, а целый интервал:

Наконец, осталось рассмотреть ещё один случай: $3x-5=0$. Тут всё просто: под модулем будет ноль, а модуль нуля тоже равен нулю (это прямо следует из определения):

Но тогда исходное уравнение $\left| 3x-5 \right|=5-3x$ перепишется следующим образом:

Этот корень мы уже получали выше, когда рассматривали случай $3x-5 \gt 0$. Более того, это корень является решением уравнения $3x-5=0$ — это ограничение, которое мы сами же и ввели, чтобы обнулить модуль.:)

Таким образом, помимо интервала нас устроит ещё и число, лежащее на самом конце этого интервала:


Объединение корней в уравнениях с модулем

Итого окончательный ответ: $x\in \left(-\infty ;\frac{5}{3} \right]$. Не очень-то привычно видеть такую хрень в ответе к довольно простому (по сути — линейному) уравнению с модулем, правда? Что ж, привыкайте: в том и состоит сложность модуля, что ответы в таких уравнениях могут оказаться совершенно непредсказуемыми.

Куда важнее другое: мы только что разобрали универсальный алгоритм решения уравнения с модуляем! И состоит этот алгоритм из следующих шагов:

  1. Приравнять каждый модуль, имеющийся в уравнении, к нулю. Получим несколько уравнений;
  2. Решить все эти уравнения и отметить корни на числовой прямой. В результате прямая разобьётся на несколько интервалов, на каждом из которых все модули однозначно раскрываются;
  3. Решить исходное уравнение для каждого интервала и объединить полученные ответы.

Вот и всё! Остаётся лишь один вопрос: куда девать сами корни, полученные на 1-м шаге? Допустим, у нас получилось два корня: $x=1$ и $x=5$. Они разобьют числовую прямую на 3 куска:

Разбиение числовой оси на интервалы с помощью точек

Ну и какие тут интервалы? Понятно, что их три:

  1. Самый левый: $x \lt 1$ — сама единица в интервал не входит;
  2. Центральный: $1\le x \lt 5$ — вот тут единица в интервал входит, однако не входит пятёрка;
  3. Самый правый: $x\ge 5$ — пятёрка входит только сюда!

Я думаю, вы уже поняли закономерность. Каждый интервал включает в себя левый конец и не включает правый.

На первый взгляд, такая запись может показаться неудобной, нелогичной и вообще какой-то бредовой. Но поверьте: после небольшой тренировки вы обнаружите, что именно такой подход наиболее надёжен и при этом не мешает однозначно раскрывать модули. Лучше уж использовать такую схему, чем каждый раз думать: отдавать левый/правый конец в текущий интервал или «перекидывать» его в следующий.

На этом урок заканчивается. Скачивайте задачи для самостоятельного решения, тренируйтесь, сравнивайте с ответами — и увидимся в следующем уроке, который будет посвящён неравенствам с модулями.:)

Эрднигоряева Марина

Данная работа является результатом изучения темы на факультативе в 8 классе. Здесь показываются геометрические преобразования графиков и их применение к построению графиков с модулями. Вводится понятие модуля и его свойства. Показано как строить графики с модулями различными способами: с помощью преобразований и на основе понятия модуля.Тема проекта является одной из трудных в курсе математики, относится к вопросам, рассматриваемых на факультативах,изучается в классах с улгубленным изучением математики. Тем не меннн такие задания даются во второй части ГИА, в ЕГЭ. Данная работа поможет понять как строить графики с модулями не только линейных, но и других функций(квадратичных, обратно- пропорциональных и др.) Работа поможет при подготовке к ГИА и ЕГЭ.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Графики линейной функции с модулями Работа Эрднигоряевой Марины, ученицы 8 класса МКОУ «Камышовская ООШ» Руководитель Горяева Зоя Эрднигоряевна, учитель математики МКОУ « Камышовская ООШ» с. Камышово, 2013г.

Цель проекта: Ответить на вопрос как строить графики линейных функций с модулями. Задачи проекта: Изучить литературу по данному вопросу. Изучить геометрические преобразования графиков и их применение к построению графиков с модулями. Изучить понятие модуля и его свойства. Научиться строить графики с модулями различными способами.

Прямая пропорциональность Прямой пропорциональностью называется функция, которую можно задать формулой вида y=kx , где x –независимая переменная, k -не равное нулю число.

Построим график функции y = x x 0 2 y 0 2

Геометрическое преобразование графиков Правило №1 График функции y = f (x)+ k – линейная функция - получается параллельным переносом графика функции y = f (x) на + k единиц вверх по оси О y при k> 0 или на |- k| единиц вниз по оси О y при k

Построим графики y=x+3 y=x-2

Правило № 2 График функции y=kf(x) получается растягиванием графика функции y = f (x) вдоль оси О y в a раз при a>1 и сжатием вдоль оси О y в a раз при 0Слайд 9

Построим график y=x y= 2 x

Правило № 3 График функции y =- f (x) получается симметричным отображением графика y = f (x) относительно оси О x

Правило № 4 График функции y=f(- x) получается симметричным отображением графика функции y = f (x) относительно оси О y

Правило № 5 График функции y=f(x+c) получается параллельным переносом графика функции y=f(x) вдоль оси О x вправо, если c 0 .

Построим графики y=f(x) y=f(x+2)

Определение модуля Модуль неотрицательного числа а равен самому числу а; модуль отрицательного числа а равен противоположному ему положительному числу -а. Или, |а|=а, если а ≥0 |а|=-а, если а

Графики линейных функций с модулями строятся: с использованием геометрических преобразований с помощью раскрытия определения модуля.

Правило № 6 График функции y=|f(x)| получается следующим образом: часть графика y=f(x) , лежащая над осью О x , сохраняется; часть, лежащая под осью О x , отображается симметрично, относительно оси О x .

Построить график функции y=-2| x-3|+4 Строим y ₁=| x | Строим y₂= |x - 3 | → параллельный перенос на +3 единицы вдоль оси Ох (сдвиг вправо) Строим y ₃ =+2|x-3| → растягиваем вдоль оси О y в 2 раза = 2 y₂ Строим у ₄ =-2|x-3| → симметрия относительно оси абсцисс = - y₃ Строим y₅ =-2|x-3|+4 → параллельный перенос на +4 единицы вдоль оси О y (сдвиг вверх) = y ₄ +4

График функции y =-2|x-3|+4

График функции у= 3|х|+2 y₁=|x| y₂=3|x|= 3 y₁ → растяжение в 3 раза y₃=3|x| +2= y₄+2 → сдвиг вверх на 2 единицы

Правило № 7 График функции y=f(| x |) получается из графика функции y=f(x) следующим образом: При x > 0 график функции сохраняется, и эта же часть графика симметрично отображается относительно оси О y

Построить график функции y = || x-1 | -2 |

У₁= |х| у₂=|х-1| у₃= у₂-2 у₄= |у₃| У=||х-1|-2|

Алгоритм построения графика функции y=│f(│x│)│ построить график функции y=f(│x│) . далее оставить без изменений все части построенного графика, которые лежат выше оси x . части, расположенные ниже оси x , отобразить симметрично относительно этой оси.

У=|2|х|-3| Построение: а) у= 2х-3 для х >0, б) у=-2х-3 для х Слайд 26

Правило № 8 График зависимости | y|=f(x) получается из графика функции y=f(x) если все точки, для которых f(x) > 0 сохраняются и они же симметрично переносятся относительно оси абсцисс.

Построить множество точек на плоскости, декартовы координаты которых х и у удовлетворяют уравнению |у|=||х-1|-1|.

| y|=||x-1| -1| строим два графика 1) у=||х-1|-1| и 2) у =-|| х-1|-1| y₁=|x| y₂=| x-1 | → сдвиг по оси Ох вправо на 1 единицу y₃ = | x -1 |- 1= → сдвиг на 1 единицу вниз y ₄ = || x-1|- 1| → симметрия точек графика для которых y₃ 0 относительно О x

График уравнения |y|=||x-1|-1| получаем следующим образом: 1)строим график функции y=f(x) и о с тавляем без изменений ту его часть, где y≥0 2) с помощью симметрии относительно оси Оx построим другую часть графика, соответствующую y

Построить график функции y =|x | − | 2 − x | . Решение. Здесь знак модуля входит в два различных слагаемых и его нужно снимать. 1) Найдём корни подмодульных выражений: х=0, 2-х=0, х=2 2) Установим знаки на интервалах:

График функции

Вывод Тема проекта является одной из трудных в курсе математики, относится к вопросам, рассматриваемых на факультативах, изучается в классах по углубленному изучению курса математики. Тем не менее такие задания даются во второй части ГИА. Данная работа поможет понять как строить графики с модулями не только линейных функций, но и других функций(квадратичных, обратно пропорциональных и др.). Работа поможет при подготовке к ГИА и ЕГЭ и позволит получить высокие баллы по математике.

Литература Виленкин Н.Я. , Жохов В.И.. Математика”. Учебник 6 класс Москва. Издательство “ Мнемозина”, 2010г Виленкин Н.Я., Виленкин Л.Н., Сурвилло Г.С. и др. Алгебра. 8 класс: учебн. Пособие для учащихся и классов с углубленным изучением математики. – Москва. Просвещение, 2009 г Гайдуков И.И. “Абсолютная величина”. Москва. Просвещение, 1968. Гурский И.П. “Функции и построение графиков”. Москва. Просвещение, 1968. Ящина Н.В. Приёмы построения графиков, содержащих модули. Ж/л «Математика в школе»,№3,1994г Детская энциклопедия. Москва. «Педагогика», 1990. Дынкин Е.Б., Молчанова С.А. Математические задачи. М., «Наука», 1993. Петраков И.С. Математические кружки в 8-10 классах. М., «Просвещение», 1987 . Галицкий М.Л. и др. Сборник задач по алгебре для 8-9 классов: Учебное пособие для учащихся и классов с углубленным изучением математики. – 12-е изд. – М.: Просвещение, 2006. – 301 с. Макрычев Ю.Н., Миндюк Н.Г. Алгебра: Дополнительные главы к школьному учебнику 9 кл.: Учебное пособие для учащихся школы и классов с углубленным изучением математики / Под редакцией Г.В.Дорофеева. – М.: Просвещение, 1997. – 224 с. Садыкина Н. Построение графиков и зависимостей, содержащих знак модуля /Математика. - №33. – 2004. – с.19-21 .. Кострикина Н.П “ Задачи повышенной трудности в курсе алгебры для 7-9 классов ”... Москва.: Просвещение, 2008г.

Транскрипт

1 Краевая научно-практическая конференция учебно-исследовательских работ учащихся 6-11 классов «Прикладные и фундаментальные вопросы математики» Методические аспекты изучения математики Построение графиков функций, содержащих модуль Габова Анжела Юрьевна, 10 класс, МОБУ «Гимназия 3» г. Кудымкар, Пикулева Надежда Ивановна, учитель математики МОБУ «Гимназия 3» г. Кудымкар Пермь, 2016

2 Содержание: Введение...3 стр. I. Основная часть... 6 стр. 1.1Историческая справка.. 6 стр. 2.Основные определения и свойства функций стр. 2.1 Квадратичная функция..7 стр. 2.2 Линейная функция...8 стр. 2.3 Дробно-рациональная функция 8 стр. 3. Алгоритмы построения графиков с модулем 9 стр. 3.1 Определение модуля.. 9 стр. 3.2 Алгоритм построения графика линейной функции с модулем...9 стр. 3.3 Построение графиков функций, содержащих в формуле «вложенные модули».10 стр. 3.4 Алгоритм построения графиков функций вида y = a 1 x x 1 + a 2 x x a n x x n + ax + b...13 стр. 3.5 Алгоритм построения графика квадратичной функции с модулем.14 стр. 3.6 Алгоритм построения графика дробно рациональной функции с модулем. 15стр. 4. Изменения графика квадратичной функции в зависимости от расположения знака абсолютной величины..17стр. II. Заключение...26 стр. III. Список литературы и источников...27 стр. IV. Приложение....28стр. 2

3 Введение Построение графиков функций - одна их интереснейших тем в школьной математике. Крупнейший математик нашего времени Израиль Моисеевич Гельфанд писал: «Процесс построения графиков является способом превращения формул и описаний в геометрические образы. Это построение графиков является средством увидеть формулы и функции и проследить, каким образом эти функции меняются. Например, если написано у =x 2, то вы сразу видите параболу; если у = x 2-4, вы видите параболу, опущенную на четыре единицы; если же у =-(x 2 4),то вы видите предыдущую параболу, перевернутую вниз. Такое умение видеть сразу формулу, и ее геометрическую интерпретацию является важным не только для изучения математики, но и для других предметов. Это умение, которое остается с вами на всю жизнь, подобно умению ездить на велосипеде, печатать на машинке или водить машину». Азы решения уравнений с модулями были получены в 6-ом 7-ом классах. Я выбрала именно эту тему, потому что считаю, что она требует более глубокого и досконального исследования. Я хочу получить более широкие знания о модуле числа, различных способах построения графиков, содержащих знак абсолютной величины. Когда в «стандартные» уравнения прямых, парабол, гипербол включают знак модуля, их графики становятся необычными и даже красивыми. Чтобы научиться строить такие графики, надо владеть приемами построения базовых фигур, а также твердо знать и понимать определение модуля числа. В школьном курсе математики графики с модулем рассматриваются недостаточно углубленно, именно поэтому мне захотелось расширить свои знания по данной теме, провести собственные исследования. Не зная определения модуля, невозможно построить даже самого простого графика, содержащего абсолютную величину. Характерной особенностью графиков функций, содержащих выражения со знаком модуля, 3

4 является наличие изломов в тех точках, в которых выражение, стоящее под знаком модуля, изменяет знак. Цель работы: рассмотреть построение графика линейной, квадратичной и дробно рациональной функций, содержащих переменную под знаком модуля. Задачи: 1) Изучить литературу о свойствах абсолютной величины линейной, квадратичной и дробно- рациональной функций. 2) Исследовать изменения графиков функций в зависимости от расположения знака абсолютной величины. 3) Научиться стоить графики уравнений. Объект исследования: графики линейной, квадратичной и дробно рациональных функций. Предмет исследования: изменения графика линейной, квадратичной и дробно рациональной функций в зависимости от расположения знака абсолютной величины. Практическая значимость моей работы заключается: 1) в использовании приобретенных знаний по данной теме, а также углубление их и применение к другим функциям и уравнениям; 2)в использовании навыков исследовательской работы в дальнейшей учебной деятельности. Актуальность: Задания на построение графиков традиционно - это одна из самых трудных тем математики. Перед нами выпускниками стоит проблема удачно сдать ГИА и ЕГЭ. Проблема исследования: построение графиков функций, содержащих знак модуля, из второй части ГИА. Гипотеза исследования: применение разработанной на основе общих способов построения графиков функций, содержащих знак модуля, методики решения заданий второй части ГИА позволит учащимся решать эти задания 4

5 на сознательной основе, выбирать наиболее рациональный метод решения, применять разные методы решении и успешнее сдать ГИА. Методы исследования, используемые в работе: 1.Анализ математической литературы и ресурсов сети Интернет по данной теме. 2.Репродуктивное воспроизведение изученного материала. 3.Познавательно- поисковая деятельность. 4.Анализ и сравнение данных в поиске решения задач. 5.Постановка гипотез и их поверка. 6.Сравнение и обобщение математических фактов. 7. Анализ полученных результатов. При написании данной работы использовались следующие источники: Интернет ресурсы, тесты ОГЭ, математическая литература. 5

6 I. Основная часть 1.1 Историческая справка. В первой половине ХVII века начинает складываться представление о функции как о зависимости одной переменной величины от другой. Так, французские математики Пьер Ферма () и Рене Декарт () представляли себе функцию как зависимость ординаты точки кривой от ее абсциссы. А английский ученый Исаак Ньютон () понимал функцию как изменяющуюся в зависимости от времени координату движущейся точки. Термин "функция" (от латинского function исполнение, совершение) впервые ввел немецкий математик Готфрид Лейбниц(). У него функция связывалась с геометрическим образом (графиком функции). В дальнейшем швейцарский математик Иоганн Бернулли() и член Петербургской Академии наук знаменитый математик XVIII века Леонард Эйлер() рассматривали функцию как аналитическое выражение. У Эйлера имеется и общее понимание функции как зависимости одной переменной величины от другой. Слово «модуль» произошло от латинского слова «modulus», что в переводе означает «мера». Это многозначное слово (омоним), которое имеет множество значений и применяется не только в математике, но и в архитектуре, физике, технике, программировании и других точных науках. В архитектуре - это исходная единица измерения, устанавливаемая для данного архитектурного сооружения и служащая для выражения кратных соотношений его составных элементов. В технике - это термин, применяемый в различных областях техники, не имеющий универсального значения и служащий для обозначения различных коэффициентов и величин, например модуль зацепления, модуль упругости и т.п. 6

7 Модуль объемного сжатия(в физике)-отношение нормального напряжения в материале к относительному удлинению. 2.Основные определения и свойства функций Функция одно из важнейших математических понятий. Функцией называют такую зависимость переменной y от переменной x, при которой каждому значению переменной x соответствует единственное значение переменной у. Способы задания функции: 1) аналитический способ (функция задается с помощью математической формулы); 2) табличный способ (функция задается с помощью таблицы); 3) описательный способ (функция задается словесным описанием); 4) графический способ (функция задается с помощью графика). Графиком функции называют множество всех точек координатной плоскости, абсциссы которых равны значению аргумента, а ординаты соответствующим значениям функции. 2.1 Квадратичная функция Функция, определяемая формулой у=ах 2 +вх+с, где х и у переменные, а параметры а, в и с любые действительные числа, причём а =0, называется квадратичной. График функции у=ах 2 +вх+с есть парабола; осью симметрии параболы у=ах 2 +вх+с является прямая, при а>0 «ветви» параболы направлены вверх, при а<0 вниз. Чтобы построить график квадратичной функции, нужно: 1) найти координаты вершины параболы и отметить её в координатной плоскости; 2) построить ещё несколько точек, принадлежащих параболе; 3) соединить отмеченные точки плавной линией.,. 2.2Линейная функция функция вида 7

8 (для функций одной переменной). Основное свойство линейных функций: приращение функции пропорционально приращению аргумента. То есть функция является обобщением прямой пропорциональности. Графиком линейной функции является прямая линия, с чем и связано ее название. Это касается вещественной функции одной вещественной переменной. 1) При, прямая образует острый угол с положительным направлением оси абсцисс. 2) При, прямая образует тупой угол с положительным направлением оси абсцисс. 3) является показателем ординаты точки пересечения прямой с осью ординат. 4)При, прямая проходит через начало координат. , 2.3Дробно-рациональная функция это дробь, числителем и знаменателем которой являются многочлены. Она имеет вид где, многочлены от любого числа переменных. Частным случаем являются рациональные функции одного переменного:, где и многочлены. 1) Любое выражение, которое можно получить из переменных с помощью четырёх арифметических действий, является рациональной функцией. 8

9 2) Множество рациональных функций замкнуто относительно арифметических действий и операции композиции. 3) Любая рациональная функция может быть представлена в виде суммы простейших дробей -это применяется при аналитическом интегрировании.. , 3.Алгоритмы построения графиков с модулем 3.1 Определение модуля Модулем действительного числа а называется само число а, если оно неотрицательно, и число противоположное а, если а отрицательное. а = 3.2 Алгоритм построения графика линейной функции с модулем Чтобы построить графики функций y= x нужно знать, при положительных x имеем x =x. Значит, для положительных значений аргумента график y= x совпадает с графиком y=x, то есть эта часть графика является лучом, выходящим из начала координат под углом 45 градусов к оси абсцисс. При x< 0 имеем x = -x; значит, для отрицательных x график y= x совпадает с биссектрисой второго координатного угла. Впрочем, вторую половину графика (для отрицательных X) легко получить из первой, если заметить, что функция y= x чётная, так как -a = a. Значит, график функции y= x симметричен относительно оси Oy, и вторую половину графика можно приобрести, отразив относительно оси ординат часть, начерченную для положительных x. Получается график:y= x 9

10 Для построения берём точки (-2; 2) (-1; 1) (0; 0) (1; 1) (2; 2). Теперь построим график y= x-1.если А точка графика у= x с координатами (a; a), то точкой графика y= x-1 с тем же значением ординаты Y будет точка A1(a+1; a). Эту точку второго графика можно получить из точки А(a; a) первого графика сдвигом параллельно оси Ox вправо. Значит, и весь график функции y= x-1 получается из графика функции y= x сдвигом параллельно оси Ox вправо на 1. Построим графики: y= x-1 Для построения берём точки (-2; 3) (-1; 2) (0; 1) (1; 0) (2; 1). 3.3 Построение графиков функций, содержащих в формуле «вложенные модули» Рассмотрим алгоритм построения на конкретном примере Построить график функции: 10

11 у=i-2-ix+5ii 1. Строим график функции. 2. График нижней полуплоскости отображаем вверх симметрично относительно оси ОХ и получаемграфик функции. 11

12 3. График функции отображаем вниз симметрично относительно оси ОХ и получаем график функции. 4. График функции отображаем вниз симметрично относительно оси ОХ и получаем график функции 5. Отображаем график функции относительно оси ОХ и получаем график. 12

13 6. В итоге график функции выглядит следующим образом 3.4. Алгоритм построения графиков функций вида y = a 1 x x 1 + a 2 x x a n x x n + ax + b. В предыдущем примере было достаточно легко раскрыть знаки модуля. Если же сумм модулей больше, то рассмотреть всевозможные комбинации знаков подмодульных выражений проблематично. Как же в этом случае построить график функции? Заметим, что графиком является ломаная, с вершинами в точках, имеющих абсциссы -1 и 2. При x = -1 и x = 2 подмодульные выражения равны нулю. Практическим путем мы приблизились к правилу построения таких графиков: Графиком функции вида y = a 1 x x 1 + a 2 x x a n x x n + ax + b является ломаная с бесконечными крайними звеньями. Чтобы построить такую ломаную, достаточно знать все ее вершины (абсциссы вершин есть нули подмодульных выражений) и по одной контрольной точке на левом иправом бесконечных звеньях. 13

14 Задача. Построить график функции y = x + x 1 + x + 1 и найти ее наименьшее значение. Решение: 1.Нули подмодульных выражений: 0; -1; Вершины ломаной (0; 2); (-1; 3); (1; 3).(нули подмодульных выражений подставляем в уравнение) 3Контрольная точка справа (2; 6), слева (-2; 6). Строим график (рис. 7), наименьшее значение функции равно Алгоритм построения графика квадратичной функции с модулем Составление алгоритмов преобразования графиков функций. 1.Построение графика функции y= f(x). По определению модуля данная функция распадается на совокупность двух функций. Следовательно, график функции y= f(x) состоит из двух графиков: y= f(x) в правой полуплоскости, y= f(-x) в левой полуплоскости. Исходя из этого, можно сформулировать правило (алгоритм). График функции y= f(x) получается из графика функции y= f(x) следующим образом: при х 0 график сохраняется, а при х < 0полученная часть графика отображается симметрично относительно оси ОУ. 2.Построение графика функции y= f(x). а). Строим график функции y= f(x). б). Часть графика y= f(x), лежащая над осью ОХ, сохраняется, часть его, лежащая под осью ОХ, отображается симметрично относительно оси ОХ. 14

15 3.Чтобы построить график функции y= f(x), надо сначала построить график функции y= f(x) при х> 0, затем при х< 0 построить изображение, симметричное ему относительно оси ОУ, а затем на интервалах, где f(x) <0,построить изображение, симметричное графику y= f(x) относительно оси ОХ. 4.Для построения графиков вида y = f(x)достаточно построить график функции y= f(x) для тех х из области определения, при которых f(х) 0, и отобразить полученную часть графика симметрично относительно оси абсцисс. Пример Построим график функции у = х 2 6х +5. Сначала построим параболу у= х 2 6х +5. Чтобы получить из неё график функции у = х 2-6х + 5, нужно каждую точку параболы с отрицательной ординатой заменить точкой с той же абсциссой, но с противоположной (положительной) ординатой. Иными словами, часть параболы, расположенную ниже оси Ох, нужно заменить линией, ей симметричной относительно оси Ох (Рис.1). Рис Алгоритм построения графика дробно рациональной функции с модулем 1. Начнем с построения графика В основе его лежит график функции и все мы знаем, как он выглядит: Теперь построим график 15

16 Чтобы получить этот график, достаточно всего лишь сдвинуть полученный ранее график на три единицы вправо. Заметим, что, если бы в знаменателе дроби стояло бы выражение х+3, то мы сдвинули бы график влево: Теперь необходимо умножить на два все ординаты, чтобы получить график функции Наконец, сдвигаем график вверх на две единицы: Последнее, что нам осталось сделать, это построить график данной функции, если она заключена под знак модуля. Для этого отражаем симметрично вверх всю часть графика, ординаты которой отрицательны (ту часть, что лежит ниже оси х): Рис.4 16

17 4.Изменения графика квадратичной функции в зависимости от расположения знака абсолютной величины. Постройте график функции у= х 2 - х -3 1) Поскольку х = х при х 0, требуемый график совпадает с параболой у=0,25 х 2 - х - 3. Если х<0, то поскольку х 2 = х 2, х =-х и требуемый график совпадает с параболой у=0,25 х 2 + х) Если рассмотрим график у=0,25 х 2 - х - 3 при х 0 и отобразить его относительно оси ОУ мы получим тот же самый график. (0; - 3) координаты точки пересечения графика функции с осью ОУ. у =0, х 2 -х -3 = 0 х 2-4х -12 = 0 Имеем, х 1 = - 2; х 2 = 6. (-2; 0) и (6; 0) - координаты точки пересечения графика функции с осью ОХ. Если х<0, ордината точки требуемого графика такая же, как и у точки параболы, но с положительной абсциссой, равной х. Такие точки симметричны относительно оси ОУ(например, вершины (2; -4) и -(2; -4). Значит, часть требуемого графика, соответствующая значениям х<0, симметрична относительно оси ОУ его же части, соответствующей значениям х>0. б) Поэтому достраиваю для х<0 часть графика, симметричную построенной относительно оси ОУ. 17

18 Рис. 4 График функции у = f (х) совпадает с графиком функции у = f (х) на множестве неотрицательных значений аргумента и симметричен ему относительно оси ОУ на множестве отрицательных значений аргумента. Доказательство: Если х 0, то f (х) = f (х), т.е. на множестве неотрицательных значений аргумента графики функции у = f (х) и у = f (х) совпадают. Так как у = f (х) - чётная функция, то её график симметричен относительно ОУ. Таким образом, график функции у = f (х) можно получить из графика функции у = f (х) следующим образом: 1. построить график функции у = f(х) для х>0; 2. Для х<0, симметрично отразить построенную часть относительно оси ОУ. Вывод: Для построения графика функции у = f (х) 1. построить график функции у = f(х) для х>0; 2. Для х<0, симметрично отразить построенную часть относительно оси ОУ. Построить график функции у = х 2-2х Освободимся от знака модуля по определению Если х 2-2х 0, т.е. если х 0 и х 2, то х 2-2х = х 2-2х Если х 2-2х<0, т.е. если 0<х< 2, то х 2-2х =- х 2 + 2х Видим, что на множестве х 0 и х 2 графики функции у = х 2-2х и у = х 2-2х совпадают, а на множестве (0;2) графики функции у = -х 2 + 2х и у = х 2-2х совпадают. Построим их. График функции у = f (х) состоит из части графика функции у = f(х) при у?0 и симметрично отражённой части у = f(х) при у <0 относительно оси ОХ. Построить график функции у = х 2 - х -6 1) Если х 2 - х -6 0, т.е. если х -2 и х 3, то х 2 - х -6 = х 2 - х

19 Если х 2 - х -6<0, т.е. если -2<х< 3, то х 2 - х -6 = -х 2 + х +6. Построим их. 2) Построим у = х 2 - х -6. Нижнюю часть графика симметрично отбражаем относительно ОХ. Сравнивая 1) и 2), видим что графики одинаковые. Работа на тетрадях. Докажем, что график функции у = f (х) совпадает с графиком функции у = f (х) для f(х) >0 и симметрично отражённой частью у = f(х) при у <0 относительно оси ОХ. Действительно, по определению абсолютной величины, можно данную функцию рассмотреть как совокупность двух линий: у = f(х), если f(х) 0; у = - f(х), если f(х) <0 Для любой функции у = f(х), если f(х) >0, то f (х) = f(х), значит в этой части график функции у = f (х) совпадает с графиком самой функции у = f(х). Если же f(х) <0, то f (х) = - f(х),т.е. точка (х; - f(х)) симметрична точке (х; f (х)) относительно оси ОХ. Поэтому для получения требуемого графика отражаем симметрично относительно оси ОХ "отрицательную" часть графика у = f(х). Вывод: действительно для построения графика функции у = f(х) достаточно: 1.Построить график функции у = f(х) ; 2. На участках, где график расположен в нижней полуплоскости, т.е., где f(х) <0, симметрично отражаем относительно оси абсцисс. (Рис.5) 19

20 Рис.5 Вывод: Для построения графика функции у= f(х) 1.Построить график функции у=f(х) ; 2. На участках, где график расположен в нижней полуплоскости, т.е., где f(х) <0, строим кривые, симметричные построенным графикам относительно оси абсцисс. (Рис.6, 7.) 20

21 Исследовательская работа по построению графиков функции у= f (х) Применяя определение абсолютной величины и ранее рассмотренные примеры, построим графиков функции: у = 2 х - 3 у = х 2-5 х у = х 2-2 и сделал выводы. Для того чтобы построить график функции у = f (х) надо: 1. Строить график функции у = f(х) для х>0. 2. Строить вторую часть графика, т. е. построенный график симметрично отражать относительно ОУ, т.к. данная функция четная. 3. Участки получившегося графика, расположенные в нижней полуплоскости, преобразовывать на верхнюю полуплоскость симметрично оси ОХ. Построить график функции у = 2 х - 3 (1-й способ по определению модуля) 1. Строим у = 2 х - 3, для 2 х - 3 > 0, х >1,5 т.е. х< -1,5 и х>1,5 а) у = 2х - 3, для х>0 б) для х<0, симметрично отражаем построенную часть относительно оси ОУ. 2. Строим у = -2 х + 3, для 2 х - 3 < 0. т.е. -1,5<х<1,5 а) у = -2х + 3, для х>0 б) для х<0, симметрично отражаем построенную часть относительно оси ОУ. У = 2 х - 3 1) Строим у = 2х-3, для х>0. 2) Строим прямую, симметричную построенной относительно оси ОУ. 3) Участки графика, расположенные в нижней полуплоскости, отображаю симметрично относительно оси ОХ. Сравнивая оба графика, видим, что они одинаковые. 21

22 Примеры задач Пример 1. Рассмотрим график функции у = х 2 6х +5. Т. к. х возводится в квадрат, то независимо от знака числа х после возведения в квадрат он будет положительным. Отсюда следует, то график функции у = х 2-6х +5 будет идентичен графику функции у = х 2-6х +5, т.е. графику функции, не содержащей знака абсолютной величины (Рис.2). Рис.2 Пример 2. Рассмотрим график функции у = х 2 6 х +5. Воспользовавшись определением модуля числа, заменим формулу у = х 2 6 х +5 Теперь мы имеем дело с хорошо знакомым нам кусочным заданием зависимости. Строить график будем так: 1) построим параболу у = х 2-6х +5 и обведём ту её часть, которая 22

23 соответствует неотрицательным значениям х, т.е. часть, расположенную правее оси Оу. 2) в той же координатной плоскости построим параболу у = х 2 +6х +5 и обведём ту её часть, которая соответствует отрицательным значениям х, т.е. часть, расположенную левее оси Оу. Обведённые части парабол вместе образуют график функции у = х 2-6 х +5 (Рис.3). Рис.3 Пример 3. Рассмотрим график функции у = х 2-6 х +5. Т.к. график уравнения у = х 2 6х +5 такой же, как и график функции без знака модуля (рассмотрено в примере 2) то следует, что график функции у = х 2 6 х +5 идентичен графику функции у = х 2 6 х +5, рассмотренному в примере 2(Рис.3). Пример 4. Построим график функции у = х 2 6х +5. Для этого построим график функции у = х 2-6х. Чтобы получить из неё график функции у = х 2-6х, нужно каждую точку параболы с отрицательной ординатой заменить точкой с той же абсциссой, но с противоположной (положительной) ординатой. Иными словами, часть параболы, расположенную ниже оси х, нужно заменить линией ей симметричной относительно оси х. Т.к. нам нужно построить график функции у = х 2-6х +5, то график рассмотренной нами функции у = х 2-6х нужно просто поднять по оси у на 5 единиц вверх (Рис.4). 23

24 Рис.4 Пример 5. Построим график функции у = х 2-6х+5. Для этого воспользуемся хорошо нам известной кусочной функцией. Найдём нули функции у = 6х +5 6х + 5 = 0 при. Рассмотрим два случая: 1)Если, то уравнение примет вид у = х 2 6х -5. Построим эту параболу и обведём ту её часть, где. 2)Если, то уравнение принимает вид у = х 2 + 6х +5. Постоим эту параболу и обведём ту её часть, которая расположена левее точки с координатами (Рис.5). 24

25 Рис.5 Пример6. Построим график функции у = х 2 6 х +5. Для этого мы построим график функции у =х 2-6 х +5. Построение этого графика мы проводили в примере 3. Т. к. наша функция полностью находится под знаком модуля, то для того, чтобы построить график функции у = х 2 6 х +5, нужно каждую точку графика функции у = х 2 6 х +5 с отрицательной ординатой заменить точкой с той же абсциссой, но с противоположной (положительной) ординатой, т.е. часть параболы, расположенную ниже оси Ох, нужно заменить линией ей симметричной относительно оси Ох (Рис.6). Рис.6 25

26 II.Заключение «Математические сведения могут применяться умело и с пользой только в том случае, если они усвоены творчески, так, что учащийся видит сам, как можно было бы прийти к ним самостоятельно». А.Н. Колмогоров. Данные задачи представляют большой интерес для учащихся девятых классов, так как они очень часто встречаются в тестах ОГЭ. Умение строить данные графики функций позволит более успешно сдать экзамен. французские математики Пьер Ферма () и Рене Декарт () представляли себе функцию как зависимость ординаты точки кривой от ее абсциссы. А английский ученый Исаак Ньютон () понимал функцию как изменяющуюся в зависимости от времени координату движущейся точки. 26

27 III.Список литературы и источников 1.Галицкий М. Л., Гольдман А. М., Звавич Л. И. Сборник задач по алгебредля 8 9 классов: Учеб. пособие для учащихся шк. и классов с углубл. изуч. математики 2 е изд. М.: Просвящение, Дорофеев Г. В. Математика. Алгебра. Функции. Анализ данных. 9 кл.:м34 Учеб. для общеобразовательных учеб. заведний 2-е изд., стереотип. М.: Дрофа, Соломоник В.С.Сборник вопросов и задач по математике М.: «Высшая школа», ЯщенкоИ.В. ГИА. Математика: типовые экзаменационные варианты: О вариантов.м.: «Национальное образование», с. 5. Ященко И.В. ОГЭ. Математика: типовые экзаменационные варианты: О вариантов.м.: «Национальное образование», с. 6. Ященко И.В. ОГЭ. Математика: типовые экзаменационные варианты: О вариантов.м.: «Национальное образование», с

28 Приложение 28

29 Пример 1. Построить график функции y = x 2 8 x Решение. Определим четность функции. Значение для y(-x) совпадает со значением для y(x), поэтому данная функция четная. Тогда ее график симметричен относительно оси Oy. Строим график функции y = x 2 8x + 12 для x 0 и симметрично отображаем график относительно Oy для отрицательных x (рис. 1). Пример 2. Следующий график вида y = x 2 8x Это значит, что график функции получают следующим образом: строят график функции y = x 2 8x + 12, оставляют часть графика, которая лежит над осью Ox, без изменений, а часть графика, которая лежит под осью абсцисс, симметрично отображают относительно оси Ox (рис. 2). Пример 3. Для построения графика функции y = x 2 8 x + 12 проводят комбинацию преобразований: y = x 2 8x + 12 y = x 2 8 x + 12 y = x 2 8 x Ответ: рисунок 3. Пример 4 Выражение, стоящее под знаком модуля, меняет знак в точке х=2/3. При х<2/3 функция запишется так: 29

30 При х>2/3 функция запишется так: То есть точка х=2/3 делит нашу координатную плоскость на две области, в одной из которых (правее) мы строим функцию а в другой (левее) график функции Строим: Пример 5 Следующий график также ломаная, но имеет две точки излома, так как содержит два выражения под знаками модуля: Посмотрим, в каких точках подмодульные выражения меняют знак: Расставим знаки для подмодульных выражений на координатной прямой: 30

31 Раскрываем модули на первом интервале: На втором интервале: На третьем интервале: Таким образом, на интервале (- ; 1.5] имеем график, записанный первым уравнением, на интервале график, записанный вторым уравнением, и на интервале }