Формула симпсона перемножение эпюр – Определение перемещений. Метод О. Мора в сочетании со способом (формулой) Симпсона. Определение перемещений при изгибе по способу верещагина Определение перемещений методом верещагина

Лекция 13 (продолжение). Примеры решения на вычисление перемещений методом Мора-Верещагина и задачи для самостоятельного решения

Определение перемещений в балках

Пример 1.

Определить перемещение точки К балки (см. рис.) при помощи интеграла Мора.

Решение.

1) Составляем уравнение изгибающего момента от внешней силы M F .

2) Прикладываем в точке К единичную силу F = 1.

3) Записываем уравнение изгибающего момента от единичной силы .

4) Определяем перемещения

Пример 2.

Определить перемещение точки К балки по способу Верещагина.

Решение.

1) Строим грузовую эпюру.

2) Прикладываем в точке К единичную силу.

3) Строим единичную эпюру.

4) Определяем прогиб

Пример 3.

Определить углы поворота на опорах А и В

Решение.

Строим эпюры от заданной нагрузки и от единичных моментов, приложенных в сечениях А и В (см. рис.). Искомые перемещения определяем с помощью интегралов Мора

,

, которые вычисляем по правилу Верещагина.

Находим параметры эпюр

C 1 = 2/3, C 2 = 1/3,

а затем и углы поворота на опорах А и В

Пример 4.

Определить угол поворота сечения С для заданной балки (см. рис.).

Решение.

Определяем опорные реакции R A =R B ,

, , R A = R B = qa .

Строим эпюры изгибающего момента от заданной нагрузки и от единичного момента, приложенного в сечении С , где ищется угол поворота. Интеграл Мора вычисляем по правилу Верещагина. Находим параметры эпюр

C 2 = -C 1 = -1/4,

а по ним и искомое перемещение

Пример 5.

Определить прогиб в сечении С для заданной балки (см. рис.).

Решение.

Эпюра M F (рис. б)

Опорные реакции:

ВЕ : , ,

, R B + R E = F , R E = 0;

АВ : , R А = R В = F ; , .

Вычисляем моменты в характерных точках , M B = 0, M C = Fa и строим эпюру изгибающего момента от заданной нагрузки.

Эпюра (рис. в).

В сечении С , где ищется прогиб, прикладываем единичную силу и строим от нее эпюру изгибающего момента, вычисляя сначала опорные реакции ВЕ - , , = 2/3; , , = 1/3, а затем моменты в характерных точках , , .

2. Определение искомого прогиба. Воспользуемся правилом Верещагина и вычислим предварительно параметры эпюр и :

,

Прогиб сечения С

Пример 6.

Определить прогиб в сечении С для заданной балки (см. рис.).

Решение.

С. Пользуясь правилом Верещагина, вычисляем параметры эпюр ,

и находим искомый прогиб

Пример 7.

Определить прогиб в сечении С для заданной балки (см. рис.).

Решение.

1. Построение эпюр изгибающих моментов.

Опорные реакции:

, , R A = 2qa ,

, R A + R D = 3qa , R D = qa .

Строим эпюры изгибающих моментов от заданной нагрузки и от единичной силы, приложенной в точке С .

2. Определение перемещений. Для вычисления интеграла Мора воспользуемся формулой Симпсона, последовательно применяя ее к каждому из трех участков, на которые разбивается балка.

Участок АВ :

Участок ВС :

Участок С D :

Искомое перемещение

Пример 8.

Определить прогиб сечения А и угол поворота сечения Е для заданной балки (рис. а ).

Решение.

1. Построение эпюр изгибающих моментов.

Эпюра М F (рис. в ). Определив опорные реакции

, , R B = 19qa /8,

, R D = 13qa /8, строим эпюры поперечной силы Q и изгибающего момента М F от заданной нагрузки.

Эпюра (рис. д). В сечении А , где ищется прогиб, прикладываем единичную силу и строим от нее эпюру изгибающего момента.

Эпюра (рис. е). Эта эпюра строится от единичного момента, приложенного в сечении Е , где ищется угол поворота.

2. Определение перемещений. Прогиб сечения А находим, пользуясь правилом Верещагина. Эпюру М F на участках ВС и CD разбиваем на простые части (рис. г). Необходимые вычисления представляем в виде таблицы.

-qa 3 /6

2qa 3 /3

-qa 3 /2

-qa 3 /2

C i

-qa 4 /2

5qa 4 /12

-qa 4 /6

-qa 4 /12

-qa 4 /24

Получаем .

Знак “минус” в результате означает, что точка А перемещается не вниз, как была направлена единичная сила, а вверх.

Угол поворота сечения Е находим двумя способами: по правилу Верещагина и по формуле Симпсона.

По правилу Верещагина, перемножая эпюры M F и , по аналогии с предыдущим получим

,

Для нахождения угла поворота по формуле Симпсона вычислим предварительно изгибающие моменты посредине участков:

Искомое перемещение, увеличенное в EI x раз,

Пример 9.

Определить, при каком значении коэффициента k прогиб сечения С будет равен нулю. При найденном значении k построить эпюру изгибающего момента и изобразить примерный вид упругой линии балки (см. рис.).

Решение.

Строим эпюры изгибающих моментов от заданной нагрузки и от единичной силы, приложенной в сечении С , где ищется прогиб.

По условию задачи V C = 0. С другой стороны, . Интеграл на участке АВ вычисляем по формуле Симпсона, а на участке ВС – по правилу Верещагина.

Находим предварительно

Перемещение сечения С ,

Отсюда , .

При найденном значении k определяем значение опорной реакции в точке А : , , , исходя из которого находим положение точки экстремума на эпюре М согласно условию .

По значениям момента в характерных точках

строим эпюру изгибающего момента (рис. г).

Пример 10.

В консольной балки, изображенной на рисунке.

Решение.

М от действия внешней сосредоточенной силы F : М В = 0, М А = –F 2l (эпюра линейная).

По условию задачи требуется определить вертикальное перемещение у В точки В консольной балки, поэтому строим единичную эпюру от действия вертикальной единичной силы F i = 1, приложенной в точке В .

Учитывая, что консольная балка состоит из двух участков с разной жесткостью на изгиб, эпюры и М перемножаем с помощью правила Верещагина по участкам отдельно. Эпюры М ипервого участка перемножаем по формуле , а эпюры второго участка – как площадь эпюры М второго участка Fl 2 / 2 на ординату 2l /3 эпюры второго участка под центром тяжести треугольной эпюры М этого же участка.

В этом случае формула дает:

Пример 11.

Определить вертикальное перемещение точки В однопролетной балки, изображенной на рисунке. Балка имеет постоянную по всей длине жесткость на изгиб EI .

Решение.

Строим эпюру изгибающих моментов М от действия внешней распределенной нагрузки: М А = 0; M D = 0;

Прикладываем в точке В единичную вертикальную силу F i = 1 и строим эпюру (см. рис.):

откуда R a = 2/3;

Откуда R d = 1/3, поэтому M a = 0; M d = 0; .

Разделим рассматриваемую балку на 3 участка. Перемножение эпюр 1-го и 3-го участков не вызывает трудностей, так как перемножаем треугольные эпюры. Для того чтобы применить правило Верещагина ко 2-му участку, разобьем эпюру М 2-го участка на две составляющие эпюры: прямоугольную и параболическую с площадью (см. таблицу).

Центр тяжести параболической части эпюры М лежит посередине 2-го участка.

Таким образом, формула при использовании правила Верещагина дает:

Пример 12.

Определить максимальный прогиб в двухопорной балке, нагруженной равномерно распределенной нагрузкой интенсивности q (см. рис.).

Решение.

Находим изгибающие моменты:

От заданной нагрузки

От единичной силы, приложенной в точке С , где ищется прогиб .

Вычисляем искомый наибольший прогиб, который возникает в среднем сечении балки

Пример 13.

Определить прогиб в точке В балки, показанной на рисунке.

Решение.

Строим эпюры изгибающих моментов от заданной нагрузки и единичной силы, приложенной в точке В. Чтобы перемножить эти эпюры, надо балку разбить на три участка, так как единичная эпюра ограничена тремя различными прямыми.

Операция перемножения эпюр на втором и третьем участках осуществляется просто. Затруднения возникают при вычислении площади и координат центра тяжести основной эпюры на первом участке. В таких случаях намного упрощает решение задачи построение расслоенных эпюр. При этом удобно одно из сечений принять условно за неподвижное и строить эпюры от каждой из нагрузок, приближаясь справа и слева к этому сечению. Целесообразно за неподвижное принимать сечение в месте перелома на эпюре единичных нагрузок.

Расслоенная эпюра, в которой за неподвижное принято сечение В , представлена на рисунке. Вычислив площади составных частей расслоенной эпюры и соответствующие им ординаты единичной эпюры, получаем

Пример 14.

Определить перемещения в точках 1 и 2 балки (рис. а).

Решение.

Приведем эпюры М и Q для балки при а =2 м; q =10 кН/м; С =1,5а ; М =0,5qa 2 ; Р =0,8qa ; М 0 =М ; =200 МПа (рис. б и в ).

Определим вертикальное перемещение центра сечения, где приложен сосредоточенный момент. Для этого рассмотрим балку в состоянии под действием только сосредоточенной силы приложенной в точке 1 перпендикулярно оси балки (по направлению искомого перемещения ) (рис. г).

Вычислим опорные реакции, составив три уравнения равновесия

Проверка

Реакции найдены верно.

Для построения эпюры рассмотрим три участка (рис. г).

1 участок

2 участок

3 участок

По этим данным строим эпюру (рис. д) со стороны растянутых волокон.

Определим по формуле Мора с помощью правила Верещагина. При этом криволинейную эпюру , на участке между опорами, можно представить в виде сложения трех эпюр. Стрелка

Знак «минус» означает, что точка 1 перемещается вверх (в направлении противоположном ).

Определим вертикальное перемещение точки 2, где приложена сосредоточенная сила. Для этого рассмотрим балку в состоянии под действием только сосредоточенной силы приложенной в точке 2 перпендикулярно оси балки (по направлению искомого перемещения ) (рис. е).

Эпюра строится аналогично предыдущей.

Точка 2 перемещается вверх.

Определим угол поворота сечения, где приложен сосредоточенный момент.

УО «БГУИР»

кафедра инженерной графики

«ОПРЕДЕЛЕНИЕ ПЕРЕМЕЩЕНИЙ МЕТОДОМ МОРА. ПРАВИЛО ВЕРЕЩАГИНА»

МИНСК, 2008


Рассмотрим теперь общий метод определения перемещений, пригодный для любой, линейно деформируемой системы при любой нагрузке. Этот метод предложен выдающимся немецким ученым О. Мором.

Пусть, например, требуется определить вертикальное перемещение точки А балки, представленной на рис. 7.13, а. Заданное (грузовое) состояние обозначим буквой к. Выберем вспомогательное состояние той же балки с единичной

силой, действующей в точке A и в направлении искомого перемещения. Вспомогательное состояние обозначим буквой i (рис. 7.13,6).

Вычислим работу внешних и внутренних сил вспомогательного состояния на перемещениях, вызванных действием сил грузового состояния.

Работа внешних сил будет равна произведению единичной силы на искомое перемещение ya

а работа внутренних сил по абсолютной величине равна интегралу

(1)

Формула (7.33) и есть формула Мора (интеграл Мора), которая дает возможность определить перемещение в любой точке линейно-деформируемой системы.

В этой формуле подынтегральное произведение MiMk положительно, если оба изгибающих момента имеют одинаковый знак, и отрицательно, если Mi и Мк имеют разные знаки.

Если бы мы определяли угловое перемещение в точке А, то в состоянии i следовало бы приложить в точке А момент, равный единице (без размерности).

Обозначая буквой Δ любое перемещение (линейное или угловое), формулу (интеграл) Мора напишем в виде

(2)

В общем случае аналитическое выражение Mi и Мк может быть различным на разных участках балки или вообще упругой системы. Поэтому вместо формулы (2) следует пользоваться более общей формулой

(3)

Если стержни системы работают не на изгиб, а на растяжение (сжатие), как, например, в фермах, то формула Мора имеет вид

(4)

В этой формуле произведение NiNK положительно, если оба усилия растягивающие или оба сжимающие. Если стержни одновременно работают и на изгиб и на растяжение (сжатие), то в обычных случаях, как показывают сравнительные расчеты, перемещения можно определять, учитывая лишь изгибающие моменты, так как влияние продольных сил весьма мало.

По тем же соображениям, как отмечалось ранее, в обычных случаях можно не учитывать влияния поперечных сил.

Вместо непосредственного вычисления интеграла Мора можно пользоваться графо-аналитическим приемом «способом перемножения эпюр», или правилом Верещагина.

Рассмотрим две эпюры изгибающих моментов, из которых одна Мк имеет произвольное очертание, а другая Мi прямолинейна (Рис 7.14, а и б).

(5)

Величина MKdz представляет собой элементарную площадь dωk эпюры Мк (заштрихована на рисунке). Таким образом,

(6)

следовательно,

(8)

Но представляет собой статический момент площади эпюры Мк относительно некоторой оси у, проходящей через точку О, равный ωkzc, где ωk - площадь эпюры моментов; zс - расстояние от оси у до центра тяжести эпюры Мк. Из чертежа видно, что

где Мсi - ордината эпюры Mi, расположенная под центром тяжести эпюры Мк (под точкой С). Следовательно,

(10)

т. е. искомый интеграл равен произведению площади эпюры Мк (любой по очертанию) на расположенную под ее центром тяжести ординату прямолинейной эпюры Мсi. Значение величины ωкМсi считается положительным, если обе эпюры располагаются по одну сторону стержня, и отрицательным, если они располагаются по разные стороны. Положительный результат перемножения эпюр означает, что направление перемещения совпадает с направлением единичной силы (или момента).

Необходимо помнить, что ордината Мсi берется обязательно в прямолинейной эпюре. В том частном случае, когда обе эпюры прямолинейные, можно умножить площадь любой из них на соответствующую ординату другой.

Для стержней переменного сечения правило Верещагина перемножения эпюр неприменимо, так как в этом случае уже нельзя выносить величину EJ из-под знака интеграла. В этом случае следует выразить EJ как функцию абсциссы сечения и затем уже вычислять интеграл Мора (1).

При ступенчатом изменении жесткости стержня интегрирование (или перемножение эпюр) производят для каждого участка отдельно (со своим значением EJ) и затем суммируют результаты.

В табл. 1 приведены значения площадей некоторых простейших эпюр и координат их центра тяжести.

Таблица 1

Вид эпюры Площадь эпюры Расстояние до центра тяжести

Для ускорения вычислений можно использовать готовые таблицы перемножения эпюр (табл.2).

В этой таблице, в клетках на пересечении соответствующих элементарных эпюр, приведены результаты перемножения этих эпюр.

При разбивке сложной эпюры на элементарные, представленные в табл. 1 и 7.2, следует иметь в виду, что параболические эпюры получены от действия только одной распределенной нагрузки.

В тех случаях, когда в сложной эпюре криволинейные участки получаются от одновременного действия сосредоточенных моментов, сил и равномерно распределенной нагрузки, во избежание ошибки следует сложную эпюру предварительно «расслоить», т. е. разбить ее на ряд самостоятельных эпюр: от действия сосредоточенных моментов, сил и от действия равномерно распределенной нагрузки.

Можно также применить другой прием, не требующий расслоения эпюр, а требующий лишь выделения криволинейной части эпюры по хорде, соединяющей крайние ее точки.

Покажем оба способа на конкретном примере.

Пусть, например, требуется определить вертикальное перемещение левого конца балки (рис. 7.15).

Суммарная эпюра от нагрузки представлена на рис. 7.15, а.


Таблица 7.2

Эпюра от действия единичной силы в точке А представлена на рис. 7.15, г.

Для определения вертикального перемещения в точке А необходимо перемножить эпюру от нагрузки на эпюру от единичной силы. Однако замечаем, что на участке ВС суммарной эпюры криволинейная эпюра получена не только от действия равномерно распределенной нагрузки, но также и от действия сосредоточенной силы Р. В результате на участке ВС уже будет не элементарная параболическая эпюра, приведенная в таблицах 7.1 и 7.2, а по существу сложная эпюра, для которой данные этих таблиц недействительны.

Поэтому необходимо произвести расслоение сложной эпюры по рис. 7.15, а на элементарные эпюры, представленные на рис. 7.15, б и 7.15, в.

Эпюра по рис. 7.15, б получена только от сосредоточенной силы, эпюра по рис. 7.15, в - только от действия равномерно распределенной нагрузки.

Теперь можно перемножить эпюры, используя табл. 1 или 2.

Для этого необходимо перемножить треугольную эпюру по рис. 7.15, б на треугольную эпюру по рис. 7.15, г и добавить к этому результат перемножения параболической эпюры на рис. 7.15, в на трапециевидную эпюру участка ВС по рис. 7.15, г, так как на участке АВ ординаты эпюры по рис. 7.15, в равны нулю.

Покажем теперь второй способ перемножения эпюр. Рассмотрим снова эпюру по рис. 7.15, а. Примем начало отсчета в сечении В. Покажем, что в пределах кривой LMN изгибающие моменты могут быть получены как алгебраическая сумма изгибающих моментов, соответствующих прямой LN, и изгибающих моментов параболической эпюры LNML, такой же, как и для простой балки длиной а, загруженной равномерно распределенной нагрузкой q:

Наибольшая ордината посредине будет равна .

Для доказательства напишем фактическое выражение изгибающего момента в сечении на расстоянии z от точки В

(А)

Напишем теперь выражение изгибающего момента в том же сечении, полученное как алгебраическая сумма ординат прямой LN и параболы LNML.

Уравнение прямой LN

где k - тангенс угла наклона этой прямой

Следовательно, уравнение изгибающих моментов, полученное как алгебраическая сумма уравнения прямой LN и параболы LNMN имеет вид

что совпадает с выражением (А).

При перемножении эпюр по правилу Верещагина следует перемножить трапецию BLNC на трапецию из единичной эпюры на участке ВС (см. рис. 7.15, г) и вычесть результат перемножения параболической эпюры LNML (площадью ) на ту же трапецию из единичной эпюры. Такой способ расслоения эпюр особенно выгоден, когда криволинейный участок эпюры находится на одном из средних участков балки.

Пример 7.7. Определить вертикальное и угловое перемещения консольной балки в месте приложения нагрузки (рис. 7.16).

Решение. Строим эпюру изгибающих моментов для грузового состояния (рис. 7.16, а).

Для определения вертикального перемещения выбираем вспомогательное состояние балки с единичной силой в точке приложения нагрузки.

Строим эпюру изгибающих моментов от этой силы (рис. 7.16, б). Определяем вертикальное перемещение по способу Мора

Значение изгибающего момента от нагрузки

Значение изгибающего момента от единичной силы

Подставляем эти значения МР и Mi под знак интеграла и интегрируем

Этот же результат был ранее получен другим способом.

Положительное значение прогиба показывает, что точка приложения нагрузки Р перемещается вниз (в направлении единичной силы). Если бы мы единичную силу направили снизу вверх, то имели бы Mi = 1z и в результате интегрирования получили бы прогиб со знаком минус. Знак минус показывал бы, что перемещение происходит не вверх, а вниз, как это и есть в действительности.

Вычислим теперь интеграл Мора путем перемножения эпюр по правилу Верещагина.

Так как обе эпюры прямолинейны, то безразлично, из какой эпюры брать площадь и из какой - ординату.

Площадь грузовой эпюры равна

Центр тяжести этой эпюры расположен на расстоянии 1/3l от заделки. Определяем ординату эпюры моментов от единичной силы, расположенную под

центром тяжести грузовой эпюры. Легко убедиться, что она равна 1/3l.

Следовательно.

Тот же результат получается и по таблице интегралов. Результат перемножения эпюр положителен, так как обе эпюры располагаются снизу стержня. Следовательно, точка приложения нагрузки смещается вниз, т. е. по принятому направлению единичной силы.

Для определения углового перемещения (угла поворота) выбираем вспомогательное состояние балки, в котором на конце балки действует сосредоточенный момент, равный единице.

Строим эпюру изгибающих моментов для этого случая (рис. 7.16, в). Определяем угловое перемещение, перемножая эпюры. Площадь грузовой эпюры

Ординаты эпюры от единичного момента везде равны единице., Следовательно, искомый угол поворота сечения равен

Так как обе эпюры расположены снизу, то результат перемножения эпюр положителен. Таким образом, концевое сечение балки поворачивается по часовой стрелке (по направлению единичного момента).

Пример: Определить по способу Мора - Верещагина прогиб в точке D для балки, изображенной на рис. 7.17..

Решение. Строим расслоенную эпюру моментов от нагрузки, т. е. строим отдельные эпюры от действия каждой нагрузки. При этом для удобства перемножения эпюр целесообразно строить расслоенные (элементарные) эпюры относительно сечения, прогиб которого определяется в данном случае относительно сечения D.

На рис. 7.17, а представлена эпюра изгибающих моментов от реакции А (участок AD) и от нагрузки Р = 4 Т (участок DC). Эпюры строятся на сжатом волокне.

На рис. 7.17, б представлены эпюры моментов от реакции В (участок BD), от левой равномерно распределенной нагрузки (участок AD) и от равномерно распределенной нагрузки, действующей на участке ВС. Эта эпюра изображена на рис. 7.17, б на участке DC снизу.

Далее выбираем вспомогательное состояние балки, для чего в точке D, где определяется прогиб, прикладываем единичную силу (рис. 7.17, в). Эпюра моментов от единичной силы изображена на рис. 7.17, г. Теперь перемножим эпюры с 1 по 7 на эпюры 8 и 9, пользуясь таблицами перемножения эпюр, с учетом знаков.

При этом эпюры, расположенные с одной стороны балки, перемножаются со знаком плюс, а эпюры, расположенные по разные стороны балки, перемножаются со знаком минус.

При перемножении эпюры 1 и эпюры 8 получим

Перемножая эпюру 5 на эпюру 8, получим

Перемножение эпюр 2 и 9 дает

Перемножаем эпюры 4 и 9

Перемножаем эпюры 6 и 9

Суммируя результаты перемножения эпюр, получим

Знак минус показывает, что точка D перемещается не вниз, как направлена единичная сила, а вверх.

Этот же результат был получен ранее по универсальному уравнению.

Конечно, в данном примере можно было расслоить эпюру только на участке AD, так как на участке DB суммарная эпюра прямолинейная и ее незачем расслаивать. На участке ВС расслоения не требуется, так как от единичной силы на этом участке эпюра равна нулю. Расслоение эпюры на участке ВС необходимо для определения прогиба в точке С.

Пример. Определить вертикальное, горизонтальное и угловое перемещения сечения А ломаного стержня, представленного на рис. 7.18, а. Жесткость сечения вертикального участка стержня - EJ1 жесткость сечения горизонтального участка - EJ2.

Решение. Строим эпюру изгибающих моментов от нагрузки. Она представлена на рис. 7.18, б (см. пример 6.9). Для определения вертикального перемещения сечения А выбираем вспомогательное состояние системы, представленное на рис. 7.18, в. В точке А приложена единичная вертикальная сила, направленная вниз.

Эпюра изгибающих моментов для этого состояния представлена на рис. 7.18, в.

Определяем вертикальное перемещение по методу Мора, используя способ перемножения эпюр. Так как на вертикальном стержне во вспомогательном состоянии эпюра М1 отсутствует, то перемножаем только эпюры, относящиеся к горизонтальному стержню. Площадь эпюры берем из грузового состояния, а ординату - из вспомогательного. Вертикальное перемещение равно

Так как обе эпюры расположены снизу, то результат перемножения берем со знаком плюс. Следовательно, точка А перемещается вниз, т. е. так, как направлена единичная вертикальная сила.

Для определения горизонтального перемещения точки А выбираем вспомогательное состояние с горизонтальной единичной силой, направленной влево (рис. 7.18, г). Эпюра моментов для этого случая представлена там же.

Перемножаем эпюры МP и М2 и получаем

Результат перемножения эпюр положителен, так как перемножаемые эпюры располагаются на одной и той же стороне стержней.

Для определения углового перемещения выбираем вспомогательное состояние системы по рис. 7.18,5 и строим эпюру изгибающих моментов для этого состояния (на том же рисунке). Перемножаем эпюры МР и М3:

Результат перемножения положителен, так как перемножаемые эпюры располагаются с одной стороны.

Следовательно, сечение A поворачивается по часовой стрелке

Те же результаты получились бы и при использовании таблиц
перемножения эпюр.

Вид деформированного стержня показан на рис. 7.18, е, при этом перемещения сильно увеличены.


ЛИТЕРАТУРА

Феодосьев В.И. Сопротивление материалов. 1986

Беляев Н.М. Сопротивление материалов. 1976

Красковский Е.Я., Дружинин Ю.А., Филатова Е.М. Расчет и конструирование механизмов приборов и вычислительных систем. 1991

Работнов Ю.Н. Механика деформируемого твердого тела. 1988

Степин П.А. Сопротивление материалов. 1990


А его собственноручные записки оказались в руках дьяка Посольского приказа, от которого и были получены. Иные сведения биографического характера извлекаются только из самого текста «Хожения». Почему же Афанасий Никитин назвал свое произведение «Хожением за три моря»? Автор сам дает нам ответ на этот вопрос: «Се написах свое грешное «Хожение за три моря», 1-е море Дербеньское (Каспийское), дория...

Отмечает, что непременным условием реализации любого коммуникативного акта должно быть «обоюдное знание реалий говорящим и слушающим, являющееся основой языкового общения», они получили в лингвистике название «фоновых знаний». По ее правильному замечанию «значение слова, употребляемого в данном туземном языке для обозначения таких совершенно различных с точки зрения среднеевропейской культуры...

Существует несколько способов (методов) определения перемещений при изгибе: метод начальных параметров; энергетический метод; метод Мора и способ Верещагина. Графо- аналитический способ Верещагина по сути является частным случаем метода Мора при решении сравнительно простых задач, поэтому его еще называют способом Мора – Верещагина. Ввиду краткости нашего курса рассмотрим только этот способ.

Запишем формулу Верещагина

y = (1/EJ)*ω г *М 1г, (1.14)

где y – перемещение в интересующем сечении;

E – модуль упругости; J – осевой момент инерции;

Рис.1.21

EJ – жесткостьбалки на изгиб; ω г – площадь грузовой эпюры моментов; М 1г – момент, снятый с единичной эпюры под центром тяжести грузовой.

В качестве примера, определим прогиб консольной балки под действием силы, приложенной на свободном конце балки.

Построим грузовую эпюру моментов.

М(z) = - F* z. 0 ≤ z ≤ l.

М(0) = 0. М(l) = - F* l.

ω г – площадь грузовой эпюры, то есть площадь полученного треугольника.

ω г = - F* l* l/2 = - F* l 2 /2.

М 1г – можно получить только с единичной эпюры.

Правило построения единичной эпюры:

1) с балки убираются все внешние силы;

2) в интересующем сечении прикладывают единичную силу (безразмерную) по направлению предполагаемого перемещения;

3) строят эпюру от этой единичной силы.

Центр тяжести прямоугольного треугольника лежит на 2/3 с вершины. Из центра тяжести грузовой эпюры спускаемся на единичную эпюру и отмечаем М 1г. Из подобия треугольников можно записать

М 1г /(- 1*l) = 2/3 l/ l, отсюда М 1г = - 2/3 l.

Подставим полученные результаты в формулу (1.14).

y = (1/EJ)*ω г *М 1г = (1/EJ)*(- F* l 2 /2)*(- 2/3 l) = F*l 3 /3EJ.

Расчет перемещений проводится после прочностного расчета, поэтому все необходимые данные известны. Подставив численные значения параметров в полученную формулу, Вы найдете перемещение балки в мм .

Рассмотрим еще одну задачу.

Предположим, Вы решили из круглого стержня сделать перекладину длиной 1,5 м для занятий гимнастикой. Необходимо подобрать диаметр стержня. Кроме того, Вы хотите знать, на сколько этот стержень прогнется под вашим весом.

Дано :

F = 800 Н (≈ 80кг); Сталь 20Х13 (нержавейка), имеющая σ в = 647 МПа;

E = 8*10 4 МПа; l = 1,5 м; a = 0,7 м; b = 0,8 м.

Условия работы конструкции повышенной опасности (Вы сами крутитесь на перекладине), принимаем n = 5.

Соответственно

[σ] = σ в / n = 647/5 = 130 МПа.

Рис.1.22

Решение :

Расчетная схема показана на рис.1.22.

Определим реакции опор.

∑M В = 0. R А *l – F*b = 0.

R А = F*b/l = 800*0,8/1,5 = 427 Н.


∑M А = 0. R В *l – F*a = 0.

R В = F*a/l = 800*0,7/1,5 = 373 Н.

Проверка

∑F Y = 0. R А + R В – F = 427 + 373 - 800 = 0.

Реакции найдены правильно.

Построим эпюру изгибающих моментов

(это и будет грузовая эпюра).

М(z 1) = R А * z 1. 0 ≤ z 1 ≤ a.

М(0) = 0. М(a) = R А * a = 427*0,7 = 299 Н*м.

М(z 2) = R А *(a + z 2) – F* z 2. 0 ≤ z 2 ≤ b.

М(0) = R А * a = 427*0,7 = 299 Н*м.

М(b)=R А *(a +b) – F* b = 427*1,5 – 800* 0,8 = 0.

Из условия прочности запишем

Wх ≥ Мг/[σ] = 299*10 3 / 130 = 2300 мм 3 .

Для круглого сечения Wх = 0,1 d 3 , отсюда

d ≥ 3 √10 Wх = 3 √ 23000 = 28,4 мм ≈ 30 мм.

Определим прогиб стержня.

Расчетная схема и единичная эпюра показаны на рис.1.22.

Воспользовавшись принципом независимости действия сил и, соответственно, независимости перемещений, запишем

y = y 1 + y 2

y 1 = (1/EJ)*ω г 1 *М 1г 1 = (1/EJ)* F* a 2 * b/(2*l)* 2*a* b /(3*l) =

F* a 3 * b 2 /(3* EJ* l 2) = 800*700 3 *800 2 /(3*8*10 4 *0,05*30 4 *1500 2) = 8 мм.

y 2 = (1/EJ)*ω г 2 *М 1г 2 = (1/EJ)* F* a* b 2 /(2*l)* 2*a* b /(3*l) = F* a 2 * b 3 /(3* EJ* l 2)

= 800*700 2 *800 3 /(3*8*10 4 *0,05*30 4 *1500 2) = 9 мм.

y = y 1 + y 2 = 8 + 9 = 17 мм.

При более сложных расчетных схемах эпюры моментов приходится разделять на большее количество частей или аппроксимировать треугольниками и прямоугольниками. В результате решение сводится к сумме решений, аналогичных приведенным выше.

Очевидно, что разнообразие приложенных нагрузок и геометрических схем конструкций приводит к различным, с точки зрения геометрии, перемножаемым эпюрам. Для реализации правила Верещагина нужно знать площади геометрических фигур и координаты их центров тяжести. На рис.29 представлены некоторые основные варианты, возникающие в практических расчетах.

Для перемножения эпюр сложной формы их необходимо разбивать на простейшие. Например, для перемножения двух эпюр, имеющих вид трапеции, нужно одну из них разбить на треугольник и прямоугольник, умножить площадь каждого из них на ординату второй эпюры, расположенную под соответствующим центром тяжести, и результаты сложить. Аналогично поступают и для умножения криволинейной трапеции на любую линейную эпюру.

Если указанные выше действия проделать в общем виде, то получим для таких сложных случаев формулы, удобные для использования в практических расчетах (рис.30). Так, результат перемножения двух трапеций (рис.30,а):

Рис. 29

По формуле (2.21) можно перемножить и эпюры, имеющих вид "перекрученных" трапеций (рис.30,б), но при этом произведение ординат, расположенных по разные стороны от осей эпюр, учитывается со знаком минус.

Если одна из перемножаемых эпюр очерчена по квадратной параболе (что соответствует нагружению равномерно распределенной нагрузкой), то для перемножения со второй (обязательно линейной) эпюрой ее рассматривают как сумму (рис.30,в) или разность (рис.30,г) трапециидальной и параболической эпюр. Результат перемножения в обоих случаях определяется формулой:

(2.22)

но значение f при этом определяется по-разному (рис. 30, в, г).

Рис. 30

Возможны случаи, когда ни одна из перемножаемых эпюр не является прямолинейной, но хотя бы одна из них ограничена ломаными прямыми линиями. Для перемножения таких эпюр их предварительно разбивают на участки, в пределах каждого из которых по крайней мере одна эпюра являетя прямолинейной.

Рассмотрим использование правила Верещагина на конкретных примерах.

Пример 15. Определить прогиб в середине пролета и угол поворота левого опорного сечения балки, нагруженной равномерно распределенной нагрузкой (рис.31,а), способом Верещагина.

Последовательность расчета способом Верещагина – такая же, как и в методе Мора, поэтому рассмотрим три состояния балки: грузовое – при действии распределенной нагрузки q; ему соответствует эпюра M q (рис.31,б), и два единичных состояния - при действии силы
приложенной в точке С (эпюра
, рис.31,в), и момента
, приложенного в точке В (эпюра
, рис.31,г).

Прогиб балки в середине пролета:

Аналогичный результат был получен ранее методом Мора (см. пример 13). Следует обратить внимание на тот факт, что перемножение эпюр выполнялось для половины балки, а затем, в силу симметрии, результат удваивался. Если же площадь всей эпюры M q умножить на расположенную под ее центром тяжести ординату эпюры
(
на рис.31,в), то величина перемещения будет совершенно иной и неправильной так как эпюра
ограничена ломаной линией. На недопустимость такого подхода уже указывалось выше.

А при вычислении угла поворота сечения в точке В можно площадь эпюры M q умножить на расположенную под ее центром тяжести ординату эпюры
(
, рис.31,г), так как эпюра
ограничена прямой линией:

Этот результат также совпадает с результатом, полученным ранее методом Мора (см. пример 13).

Рис. 31

Пример 16. Определить горизонтальное и вертикальное перемещения точки А в раме (рис.32,а).

Как и в предыдущем примере, для решения задачи необходимо рассмотреть три состояния рамы: грузовое и два единичных. Эпюра моментов M F , соответствующая первому состоянию, представлена на рис.32,б. Для вычисления горизонтального перемещения прикладываем в точке А по направлению искомого перемещения (т.е. горизонтально) силу
, а для вычисления вертикального перемещения силу
прикладываем вертикально (рис.32,в,д). Соответствующие эпюры
и
показаны на рис.32,г,е.

Горизонтальное перемещение точки А:

При вычислении
на участке АВ трапеция (эпюра M F) разбита на треугольник и прямоугольник, после чего треугольник с эпюры
"умножен" на каждую из этих фигур. На участке ВС криволинейная трапеция разделена на криволинейный треугольник и прямоугольник, а для перемножения эпюр на участке СД использована формула (2.21).

Знак " - ", полученный при вычислении
, означает, что точка А перемещается по горизонтали не влево (в этом направлении приложена сила
), а вправо.

Здесь знак " - " означает, что точка А перемещается вниз, а не вверх.

Отметим, что единичные эпюры моментов, построенные от силы
, имеют размерность длины, а единичные эпюры моментов построенные от момента
, являются безразмерными.

Пример 17. Определить вертикальное перемещение точки А плоско-пространственной системы (рис.33,а).

Рис.23

Как известно (см. гл.1), в поперечных сечениях стержней плоско-пространственной системы возникают три внутренних силовых фактора: поперечная сила Q y , изгибающий момент M x и крутящий момент M кр. Так как влияние поперечной силы на величину перемещения незначительно (см. пример 14, рис.27), то при вычислении перемещения методом Мора и Верещагина из шести слагаемых остаются только два.

Для решения задачи построим эпюры изгибающих моментов M x,q и крутящих моментов М кр,q от внешней нагрузки (рис.33,б), а затем в точке А приложим силу
по направлению искомого перемещения, т.е. вертикального (рис.33,в), и построим единичные эпюры изгибающих моментов
и крутящих моментов
(рис.33,г). Стрелками на эпюрах крутящих моментов показаны направления закручивания соответствующих участков плоско-пространственной системы.

Вертикальное перемещение точки А:

При перемножении эпюр крутящих моментов произведение берется со знаком "+", если стрелки, указывающие направление кручения, сонаправленны, и со знаком " - " – в противном случае.

Недостатком метода Мора является необходимость получать значения внутренних силовых факторов, входящих в подинтегральные выражения формул (2.18) и (2.19), в общем виде, как функций от z, что становится достаточно трудоемким уже при двух – трех участках разбиения в балках и особенно – в рамах.

Оказывается, что от этого недостатка можно уйти, если непосредственное интегрирование в формулах Мора заменить так называемым перемножением эпюр . Такая замена возможна в тех случаях, когда хотя бы одна из перемножаемых эпюр является прямолинейной. Этому условию соответствуют все системы, состоящие из прямолинейных стержней. Действительно, в таких системах эпюра, построенная от обобщенной единичной силы, всегда будет прямолинейной.

Способ вычисления интеграла Мора путем замены непосредственного интегрирования перемножением соответствующих эпюр называется способом (или правилом) Верещагина и заключается в следующем: чтобы перемножить две эпюры, из которых хотя бы одна является прямолинейной, нужно площадь одной эпюры (если есть криволинейная эпюра, то обязательно ее площадь) умножить на ординату другой эпюры, расположенную под центром тяжести первой.

Докажем справедливость этого правила. Рассмотрим две эпюры (рис.28). Пусть одна из них (Mn) является грузовой и имеет криволинейное очертание, а вторая соответствует единичной нагрузке и является линейной.

Из рис.28 следует, что Подставим значения в выражение

где - дифференциал площади эпюры Mn.


Рис. 28

Интеграл представляет собой статический момент площади относительно оси О – О1, при этом:

где zc – абсцисса центра тяжести площади , тогда:

Учитывая, что получим:
(2.20)
Выражение (2.20) определяет результат перемножения двух эпюр, а не перемещения. Чтобы получить перемещение, этот результат нужно разделить на жесткость, соответствующую внутренним силовым факторам, стоящим под знаком интеграла.

Основные варианты перемножения эпюр

Очевидно, что разнообразие приложенных нагрузок и геометрических схем конструкций приводит к различным, с точки зрения геометрии, перемножаемым эпюрам. Для реализации правила Верещагина нужно знать площади геометрических фигур и координаты их центров тяжести. На рис.29 представлены некоторые основные варианты, возникающие в практических расчетах.

Для перемножения эпюр сложной формы их необходимо разбивать на простейшие. Например, для перемножения двух эпюр, имеющих вид трапеции, нужно одну из них разбить на треугольник и прямоугольник, умножить площадь каждого из них на ординату второй эпюры, расположенную под соответствующим центром тяжести, и результаты сложить. Аналогично поступают и для умножения криволинейной трапеции на любую линейную эпюру.

Если указанные выше действия проделать в общем виде, то получим для таких сложных случаев формулы, удобные для использования в практических расчетах (рис.30). Так, результат перемножения двух трапеций (рис.30,а):

(2.21)



Рис. 29

По формуле (2.21) можно перемножить и эпюры, имеющих вид "перекрученных" трапеций (рис.30,б), но при этом произведение ординат, расположенных по разные стороны от осей эпюр, учитывается со знаком минус.

Если одна из перемножаемых эпюр очерчена по квадратной параболе (что соответствует нагружению равномерно распределенной нагрузкой), то для перемножения со второй (обязательно линейной) эпюрой ее рассматривают как сумму (рис.30,в) или разность (рис.30,г) трапециидальной и параболической эпюр. Результат перемножения в обоих случаях определяется формулой:
(2.22)

но значение f при этом определяется по-разному (рис. 30, в, г).



Рис. 30

Возможны случаи, когда ни одна из перемножаемых эпюр не является прямолинейной, но хотя бы одна из них ограничена ломаными прямыми линиями. Для перемножения таких эпюр их предварительно разбивают на участки, в пределах каждого из которых по крайней мере одна эпюра являетя прямолинейной.
Рассмотрим использование правила Верещагина на конкретных примерах.

Пример 15. Определить прогиб в середине пролета и угол поворота левого опорного сечения балки, нагруженной равномерно распределенной нагрузкой (рис.31,а), способом Верещагина .

Последовательность расчета способом Верещагина – такая же, как и в методе Мора, поэтому рассмотрим три состояния балки: грузовое – при действии распределенной нагрузки q; ему соответствует эпюра Mq (рис.31,б), и два единичных состояния - при действии силы приложенной в точке С (эпюра , рис.31,в), и момента , приложенного в точке В (эпюра , рис.31,г).

Прогиб балки в середине пролета:

Аналогичный результат был получен ранее методом Мора (см. пример 13). Следует обратить внимание на тот факт, что перемножение эпюр выполнялось для половины балки, а затем, в силу симметрии, результат удваивался. Если же площадь всей эпюры Mq умножить на расположенную под ее центром тяжести ординату эпюры (на рис.31,в), то величина перемещения будет совершенно иной и неправильной так как эпюра ограничена ломаной линией. На недопустимость такого подхода уже указывалось выше.

А при вычислении угла поворота сечения в точке В можно площадь эпюры Mq умножить на расположенную под ее центром тяжести ординату эпюры (, рис.31,г), так как эпюра ограничена прямой линией:

Этот результат также совпадает с результатом, полученным ранее методом Мора (см. пример 13).


Рис. 31

Пример 16. Определить горизонтальное и вертикальное перемещения точки А в раме (рис.32,а).

Как и в предыдущем примере, для решения задачи необходимо рассмотреть три состояния рамы: грузовое и два единичных. Эпюра моментов MF, соответствующая первому состоянию, представлена на рис.32,б. Для вычисления горизонтального перемещения прикладываем в точке А по направлению искомого перемещения (т.е. горизонтально) силу , а для вычисления вертикального перемещения силу прикладываем вертикально (рис.32,в,д). Соответствующие эпюры и показаны на рис.32,г,е.

Горизонтальное перемещение точки А:



При вычислении на участке АВ трапеция (эпюра MF) разбита на треугольник и прямоугольник, после чего треугольник с эпюры "умножен" на каждую из этих фигур. На участке ВС криволинейная трапеция разделена на криволинейный треугольник и прямоугольник, а для перемножения эпюр на участке СД использована формула (2.21).

Знак " - ", полученный при вычислении , означает, что точка А перемещается по горизонтали не влево (в этом направлении приложена сила ), а вправо.